I am writing my master thesis on the subject of dynamic keystroke authentication. To support ongoing research, I am writing code to test out different methods of feature extraction and feature matching.
My current simple approach just checks if the reference password keycodes matches the currently typed in keycodes and also checks if the keypress times (dwell) and the key-to-key times (flight) are the same as reference times +/- 100ms (tolerance). This is of course very limited and I want to extend it with some sort of fuzzy c-means pattern matching.
For each key the features look like: keycode, dwelltime, flighttime (first flighttime is always 0).
Obviously the keycodes can be taken out of the fuzzy algorithm because they have to be exactly the same. In this context, how would a practical implementation of fuzzy c-means look like?
Generally, you would do the following:
I'm not an expert, but this seems like an odd approach to determining whether a login attempt is authentic or not. I've seen FCM used for pattern recognition (eg. which facial expression am I making?), which makes sense because you're dealing with several categories (eg. happy, sad, angry, etc...) with defining characteristics. In your case, you really only have one category (authentic) with defining characteristics. Non-authentic keystrokes are simply "not like" authentic keystrokes, so they won't cluster.
Perhaps I am missing something?