In short, I am looking for a theorem prover which its underlying logic supports multiple subtyping / subclassing mechanism.( I tried to use Isabelle, but it does not seem to provide a first class support for subtyping. see this )
I would like to define a couple of types among which some are subclasses / subtypes of others. Furthermore, each type might be subtype of more than one type. For example:
Type A
Type B
Type C
Type E
Type F
C is subtype of A
C is also subtype of B
E and F are subtypes of B
PS: I am editing this question again to be more specific (because of a complains about being of-topic!): I am looking for a theorem prover / proof assistance in which I can define the above structure in a straight forward manner (not with workarounds as it is kindly described by some respectable answers here). If I take the types as classes then It seems above subtypings could be easily formulated in C++! So I am looking for a formal system / tool that I can define such a subtyping structure there and I can reason?
Many thanks
There are ways to achieve that in
agda.recordrecordfor the types you wantFor example:
Now
list-is-monoid = monoid Nil (++) lemma-append-nil lemma-nil-append lemma-append-associnstantiates (proves) that aListis aMonoid(given the the proofs ofNilbeing a neutral element, and a proof of associativity).