Access Scalene Profile Object via Python Code

346 Views Asked by At

I want to access the profiler output in python code after scalene_profiler.stop() but I cant seem to find any function that can give me access to it? The reason i need it is because I want the time-consumed in seconds instead of the Percentages that are in the report generated, and I want to save this data in my own format. Is that possible somehow?

An attempt I made on my own (although I don't think its most efficient):

from scalene import scalene_profiler
import time

scalene_profiler.start()
time.sleep(3). # my code - i wud like only stats of the lines of code in between start and stop in a dictionary.
scalene_profiler.stop()


def ddict2dict(d):
    if not isinstance(d, dict):
        return d
    new_d = {}
    for k, v in d.items():
        if isinstance(v, dict):
            new_d[k] = ddict2dict(v)
        else:
            new_d[k] = v
    return new_d


# an example of a way i've tried so far - i see RunningStats object here instead of the actual stats so not sure if this is most efficient
data = {n: ddict2dict(getattr(scalene_profiler.Scalene._Scalene__stats, n)) for n in
        scalene_profiler.ScaleneStatistics.payload_contents}
print(data)

Output: {'max_footprint': 0, 'max_footprint_loc': None, 'current_footprint': 0, 'elapsed_time': 3.0018277168273926, 'alloc_samples': 0, 'total_cpu_samples': 2.391642999999993, 'cpu_samples_c': {'tmp.py': {18: 0.0016429999999999865}}, 'cpu_samples_python': {'tmp.py': {18: 2.389999999999993}}, 'bytei_map': {}, 'cpu_samples': {'tmp.py': 2.391642999999993}, 'cpu_utilization': {'tmp.py': {18: <scalene.runningstats.RunningStats object at 0x1232298d0>}}, 'memory_malloc_samples': {}, 'memory_python_samples': {}, 'memory_free_samples': {}, 'memcpy_samples': {}, 'memory_max_footprint': {}, 'per_line_footprint_samples': {}, 'total_memory_free_samples': 0.0, 'total_memory_malloc_samples': 0.0, 'memory_footprint_samples': [], 'function_map': {}, 'firstline_map': {}, 'gpu_samples': {'tmp.py': {18: 0.0}}, 'total_gpu_samples': 0.0, 'memory_malloc_count': {}, 'memory_free_count': {}}

Thank you!

0

There are 0 best solutions below