I'm using cuML
from RAPIDS AI. I used a GridSearchCV
for finding the best parameters, however i am unable to get the best features (for feature selection purposes).
here's my code:
combined_df=cpd.concat([train_df,evaluate_df])
combined_df=combined_df.astype('float32')
test_fold = [0] * len(train_df) + [1] * len(evaluate_df)
p_test3 = {'n_estimators':[45,50,200,500],'max_depth':[20,25,15,10]}#'max_features':[30,50,60,70,80]
tuning = GridSearchCV(estimator =cuRFr(n_streams=1, min_samples_split=2, min_samples_leaf=1, random_state=0),
param_grid = p_test3, scoring='r2', cv=PredefinedSplit(test_fold=test_fold))
tuning.fit(combined_df.iloc[:,2:].to_numpy(dtype='float32'),combined_df['Mcap_w'].to_numpy(dtype='float32'))
i recieved an error when tried tuning.feature_importances_
----> 1 best_features = tuning.best_estimator_.feature_importances_ File base.pyx:330, in cuml.interna ls.base.Base.__getattr__()
AttributeError: feature_importances_