I'm trying to add equation of the linear equation fitted to the plotted data. I have used geom_smooth and method 'lm' with formula = 'y~x'. add eq to single plot shows how to it to a single plot, however, my query is how to add an equation to a plotnine when dealing with facet_wrap or facet_grid?
workable example is given below:
import plotnine as p9
from scipy import stats
from plotnine.data import mtcars as df
# create plot
plot=(p9.ggplot(data=df, mapping= p9.aes('wt','mpg', color = 'factor(gear)'))
+ p9.geom_point(p9.aes())
+ p9.facet_wrap('~ gear')
+ p9.xlab('Wt')+ p9.ylab(r'MPG')
+ p9.geom_smooth(method='lm', formula = 'y~x', se=False)
)
print(plot)
The solution given for a single plot by the above quoted site is:
import plotnine as p9
from scipy import stats
from plotnine.data import mtcars as df
#calculate best fit line
slope, intercept, r_value, p_value, std_err = stats.linregress(df['wt'],df['mpg'])
df['fit']=df.wt*slope+intercept
#format text
txt= 'y = {:4.2e} x + {:4.2E}; R^2= {:2.2f}'.format(slope, intercept, r_value*r_value)
#create plot. The 'factor' is a nice trick to force a discrete color scale
plot=(p9.ggplot(data=df, mapping= p9.aes('wt','mpg', color = 'factor(gear)'))
+ p9.geom_point(p9.aes())
+ p9.xlab('Wt')+ p9.ylab(r'MPG')
+ p9.geom_line(p9.aes(x='wt', y='fit'), color='black')
+ p9.annotate('text', x= 3, y = 35, label = txt))
#for some reason, I have to print my plot
print(plot)
The same using ggplot in R is discussed here: add eq to facet in R
I am not sure how this can be achieved in plotnine.
The
ggplot2
way of achieving that is to create a data frame containing as one column the categories of the faceting variable (make sure to use the same column name as for the main data) and as a second column the labels you want to add to each facet. This data frame could then be used ingeom_text
to add the labels.