In the ALS example I have the following code:
(http://spark.apache.org/docs/latest/ml-collaborative-filtering.html)
from pyspark.ml.evaluation import RegressionEvaluator
from pyspark.ml.recommendation import ALS
from pyspark.sql import Row
lines = spark.read.text("data/mllib/als/sample_movielens_ratings.txt").rdd
parts = lines.map(lambda row: row.value.split("::"))
ratingsRDD = parts.map(lambda p: Row(userId=int(p[0]), movieId=int(p[1]),
rating=float(p[2]), timestamp=long(p[3])))
ratings = spark.createDataFrame(ratingsRDD)
(training, test) = ratings.randomSplit([0.8, 0.2])
# Build the recommendation model using ALS on the training data
als = ALS(maxIter=5, regParam=0.01, userCol="userId", itemCol="movieId", ratingCol="rating")
model = als.fit(training)
# Evaluate the model by computing the RMSE on the test data
predictions = model.transform(test)
evaluator = RegressionEvaluator(metricName="rmse", labelCol="rating", predictionCol="prediction")
rmse = evaluator.evaluate(predictions)
print("Root-mean-square error = " + str(rmse))
If you see it Creates a Row with the attribute timestamp, but then int the ALS creation it doesn't use it.
What is the purpose of the attribute timestamp in the Row?
None. It is just one of the fields that come with MovieLens data. For ALS it has no use and you can ignore it.