I would like to add columns to a pandas dataframe in a groupby object
# create the dataframe
idx = ['a','b','c'] * 10
df = pd.DataFrame({
'f1' : np.random.randn(30),
'f2' : np.random.randn(30),
'f3' : np.random.randn(30),
'f4' : np.random.randn(30),
'f5' : np.random.randn(30)},
index = idx)
colnum = [1,2,3,4,5]
newcol = ['a' + str(s) for s in colnum]
# group by the index
df1 = df.groupby(df.index)
Trying to loop over each group in the groupby object and add new columns to the current dataframe in the group
for group in df1:
tmp = group[1]
for s in range(len(tmp.columns)):
print(s)
tmp.loc[:,newcol[s]] = tmp[[tmp.columns[s]]] * colnum[s]
group[1] = tmp
I'm unable to add the new dataframe to the group object
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
TypeError: 'tuple' object does not support item assignment
Is there a way to replace the dataframe in the groupby object with a new dataframe ?
Base on your code: (PS:
df.mul([1,2,3,4,5])
work for you example out put)