I'm using LAPACKE_cgesdd
and LAPACKE_cgesvd
to compute the singular values of a matrix. Both the routines have the option to compute the singular values only. The problem I have is that, in the following four test cases:
- Full SVD with
LAPACKE_cgesdd
; - Full SVD with
LAPACKE_cgesvd
; - Singular values only with
LAPACKE_cgesdd
; - Singular values only with
LAPACKE_cgesvd
I receive different singular values. In particular:
Test, 3 x 4
matrix
a[0].real(5.91); a[0].imag(-5.96);
a[1].real(7.09); a[1].imag(2.72);
a[2].real(7.78); a[2].imag(-4.06);
a[3].real(-0.79); a[3].imag(-7.21);
a[4].real(-3.15); a[4].imag(-4.08);
a[5].real(-1.89); a[5].imag(3.27);
a[6].real(4.57); a[6].imag(-2.07);
a[7].real(-3.88); a[7].imag(-3.30);
a[8].real(-4.89); a[8].imag(4.20);
a[9].real(4.10); a[9].imag(-6.70);
a[10].real(3.28); a[10].imag(-3.84);
a[11].real(3.84); a[11].imag(1.19);
Full SVD with LAPACKE_cgesdd
17.8592720031738 11.4463796615601 6.74482488632202
Full SVD with LAPACKE_cgesvd
17.8651084899902 11.3695945739746 6.83876800537109
Singular values only with LAPACKE_cgesdd
17.8592758178711 11.4463806152344 6.74482440948486
Singular values only with LAPACKE_cgesvd
17.8705902099609 11.5145053863525 6.82878828048706
As it can be seen, even for the same routine, the results can change since the third significant digit when switching from full SVD to singular values only.
My questions are:
Is this reasonable?
Am I doing something wrong?
Thank you in advance for any help.
This is the code I'm using:
#include <stdlib.h>
#include <stdio.h>
#include <algorithm> // std::min
#include <time.h>
#include <complex>
#include <mkl.h>
#include "mkl_lapacke.h"
#include "TimingCPU.h"
#include "InputOutput.h"
//#define FULL_SVD
#define PRINT_MATRIX
#define PRINT_SINGULAR_VALUES
//#define PRINT_LEFT_SINGULAR_VECTORS
//#define PRINT_RIGHT_SINGULAR_VECTORS
#define SAVE_MATRIX
#define SAVE_SINGULAR_VALUES
//#define SAVE_LEFT_SINGULAR_VECTORS
//#define SAVE_RIGHT_SINGULAR_VECTORS
#define GESDD
//#define GESVD
/*************************************************************/
/* PRINT A SINGLE PRECISION COMPLEX MATRIX STORED COLUMNWISE */
/*************************************************************/
void print_matrix_col(char const *desc, MKL_INT Ncols, MKL_INT Nrows, std::complex<float>* a, MKL_INT LDA) {
printf( "\n %s\n[", desc);
for(int i = 0; i < Ncols; i++) {
for(int j = 0; j < Nrows; j++)
printf("(%6.2f,%6.2f)", a[i * LDA + j].real(), a[i * LDA + j].imag());
printf( "\n" );
}
}
/**********************************************************/
/* PRINT A SINGLE PRECISION COMPLEX MATRIX STORED ROWWISE */
/**********************************************************/
void print_matrix_row(char const *desc, int Nrows, int Ncols, std::complex<float>* a, int LDA) {
printf( "\n %s\n", desc);
for (int i = 0; i < Ncols; i++) {
for (int j = 0; j < Ncols; j++)
printf("%2.10f + 1i * %2.10f ", a[i * LDA + j].real(), a[i * LDA + j].imag());
printf( ";\n" );
}
}
/****************************************/
/* PRINT A SINGLE PRECISION REAL MATRIX */
/****************************************/
void print_rmatrix(char const *desc, MKL_INT m, MKL_INT n, float* a, MKL_INT lda ) {
MKL_INT i, j;
printf( "\n %s\n", desc );
for( i = 0; i < m; i++ ) {
for( j = 0; j < n; j++ ) printf( " %6.2f", a[i*lda+j] );
printf( "\n" );
}
}
/********/
/* MAIN */
/********/
int main() {
const int Nrows = 3; // --- Number of rows
const int Ncols = 4; // --- Number of columns
const int LDA = Ncols;
const int LDU = Nrows;
const int LDVT = Ncols;
const int numRuns = 20; // --- Number of runs for timing
TimingCPU timerCPU;
// --- Allocating space and initializing the input matrix
std::complex<float> *a = (std::complex<float> *)malloc(Nrows * Ncols * sizeof(std::complex<float>));
srand(time(NULL));
// for (int k = 0; k < Nrows * Ncols; k++) {
// a[k].real((float)rand() / (float)(RAND_MAX));
// a[k].imag((float)rand() / (float)(RAND_MAX));
// }
a[0].real(5.91); a[0].imag(-5.96);
a[1].real(7.09); a[1].imag(2.72);
a[2].real(7.78); a[2].imag(-4.06);
a[3].real(-0.79); a[3].imag(-7.21);
a[4].real(-3.15); a[4].imag(-4.08);
a[5].real(-1.89); a[5].imag(3.27);
a[6].real(4.57); a[6].imag(-2.07);
a[7].real(-3.88); a[7].imag(-3.30);
a[8].real(-4.89); a[8].imag(4.20);
a[9].real(4.10); a[9].imag(-6.70);
a[10].real(3.28); a[10].imag(-3.84);
a[11].real(3.84); a[11].imag(1.19);
// --- Allocating space for the singular vector matrices
#ifdef FULL_SVD
std::complex<float> *u = (std::complex<float> *)malloc(Nrows * LDU * sizeof(std::complex<float>));
std::complex<float> *vt = (std::complex<float> *)malloc(Ncols * LDVT * sizeof(std::complex<float>));
#endif
// --- Allocating space for the singular values
float *s = (float *)malloc(std::min(Nrows, Ncols) * sizeof(float));
#ifdef GESVD
float *superb = (float *)malloc((std::min(Nrows, Ncols) - 1) * sizeof(float));
#endif
// --- Print and/or save input matrix
#ifdef PRINT_MATRIX
print_matrix_row("Matrix (stored rowwise)", Ncols, Nrows, a, LDA);
#endif
#ifdef SAVE_MATRIX
saveCPUcomplextxt(a, "/home/angelo/Project/SVD/MKL/a.txt", Ncols * Nrows);
#endif
// --- Compute singular values
MKL_INT info;
float timing = 0.f;
for (int k = 0; k < numRuns; k++) {
timerCPU.StartCounter();
// --- The content of the input matrix a is destroyed on output
#if defined(FULL_SVD) && defined(GESDD)
printf("Running Full SVD - GESDD\n");
MKL_INT info = LAPACKE_cgesdd(LAPACK_ROW_MAJOR, 'A', Nrows, Ncols, (MKL_Complex8 *)a, LDA, s, (MKL_Complex8 *)u, LDU, (MKL_Complex8 *)vt, LDVT);
#endif
#if !defined(FULL_SVD) && defined(GESDD)
printf("Running singular values only - GESDD\n");
MKL_INT info = LAPACKE_cgesdd(LAPACK_ROW_MAJOR, 'N', Nrows, Ncols, (MKL_Complex8 *)a, LDA, s, NULL, LDU, NULL, LDVT);
#endif
#if defined(FULL_SVD) && defined(GESVD)
printf("Running Full SVD - GESVD\n");
MKL_INT info = LAPACKE_cgesvd(LAPACK_ROW_MAJOR, 'A', 'A', Nrows, Ncols, (MKL_Complex8 *)a, LDA, s,
(MKL_Complex8 *)u, LDU, (MKL_Complex8 *)vt, LDVT, superb);
#endif
#if !defined(FULL_SVD) && defined(GESVD)
printf("Running singular values only - GESVD\n");
MKL_INT info = LAPACKE_cgesvd(LAPACK_ROW_MAJOR, 'N', 'N', Nrows, Ncols, (MKL_Complex8 *)a, LDA, s,
NULL, LDU, NULL, LDVT, superb);
#endif
if(info > 0) { // --- Check for convergence
printf( "The algorithm computing SVD failed to converge.\n" );
exit(1);
}
timing = timing + timerCPU.GetCounter();
}
printf("Timing = %f\n", timing / numRuns);
// --- Print and/or save singular values
#ifdef PRINT_SINGULAR_VALUES
print_rmatrix("Singular values", 1, Ncols, s, 1);
#endif
#ifdef SAVE_SINGULAR_VALUES
saveCPUrealtxt(s, "/home/angelo/Project/SVD/MKL/s.txt", std::min(Nrows, Ncols));
#endif
// --- Print left singular vectors
#ifdef PRINT_LEFT_SINGULAR_VECTORS
print_matrix_col("Left singular vectors (stored columnwise)", Ncols, Ncols, u, LDU);
#endif
#if defined(FULL_SVD) && defined(SAVE_LEFT_SINGULAR_VECTORS)
saveCPUcomplextxt(u, "/home/angelo/Project/SVD/MKL/u.txt", Nrows * LDU);
#endif
// --- Print right singular vectors
#ifdef PRINT_RIGHT_SINGULAR_VECTORS
print_matrix_col("Right singular vectors (stored rowwise)", Ncols, Nrows, vt, LDVT);
#endif
#if defined(FULL_SVD) && defined(SAVE_RIGHT_SINGULAR_VECTORS)
saveCPUcomplextxt(vt, "/home/angelo/Project/SVD/MKL/vt.txt", Ncols * LDVT);
#endif
exit(0);
}
compiled as
g++ -DMKL_ILP64 -fopenmp -m64 -I$MKLROOT/include svdMKLComplexSingle.cpp TimingCPU.cpp InputOutput.cpp -L$MKLROOT/lib/intel64 -lmkl_intel_ilp64 -lmkl_core -lmkl_sequential -lpthread -lm -fno-exceptions