I have looked at the other solutions presented, especially not mixing keras and tf.keras, and am not having any luck. Maybe because the solutions are mostly from 2019? I also have messed around with the library versions, also to no avail.
My goal is just to get the mask rcnn working on my machine so that I can finally make my own version. I am having a lot of trouble getting it up and running.
I am running this on a venv jupyter notebook.
Import block:
import os
import sys
import random
import math
import numpy as np
import skimage.io
import matplotlib
import matplotlib.pyplot as plt
# Root directory of the project
ROOT_DIR = os.path.abspath("../")
import warnings
warnings.filterwarnings("ignore")
# Import Mask RCNN
sys.path.append(ROOT_DIR) # To find local version of the library
from mrcnn import utils
import mrcnn.model as modellib
from mrcnn import visualize
# Import COCO config
import samples.coco.coco as coco
%matplotlib inline
Problematic block:
# Create model object in inference mode.
model = modellib.MaskRCNN(mode="inference", model_dir='mask_rcnn_coco.hy', config=config)
Full error message:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[55], line 2
1 # Create model object in inference mode.
----> 2 model = modellib.MaskRCNN(mode="inference", model_dir='mask_rcnn_coco.hy', config=config)
4 # Load weights trained on MS-COCO
5 model.load_weights('mask_rcnn_coco.h5', by_name=True)
File ~\Desktop\Spore\spore\Mask_RCNN\mrcnn\model.py:1837, in MaskRCNN.__init__(self, mode, config, model_dir)
1835 self.model_dir = model_dir
1836 self.set_log_dir()
-> 1837 self.keras_model = self.build(mode=mode, config=config)
File ~\Desktop\Spore\spore\Mask_RCNN\mrcnn\model.py:1961, in MaskRCNN.build(self, mode, config)
1956 # Generate proposals
1957 # Proposals are [batch, N, (y1, x1, y2, x2)] in normalized coordinates
1958 # and zero padded.
1959 proposal_count = config.POST_NMS_ROIS_TRAINING if mode == "training"\
1960 else config.POST_NMS_ROIS_INFERENCE
-> 1961 rpn_rois = ProposalLayer(
1962 proposal_count=proposal_count,
1963 nms_threshold=config.RPN_NMS_THRESHOLD,
1964 name="ROI",
1965 config=config)([rpn_class, rpn_bbox, anchors])
1967 if mode == "training":
1968 # Class ID mask to mark class IDs supported by the dataset the image
1969 # came from.
1970 active_class_ids = KL.Lambda(
1971 lambda x: parse_image_meta_graph(x)["active_class_ids"]
1972 )(input_image_meta)
File ~\Desktop\Spore\spore\lib\site-packages\keras\engine\topology.py:589, in __call__(self, inputs, **kwargs)
File ~\Desktop\Spore\spore\lib\site-packages\keras\engine\topology.py:2799, in _collect_previous_mask(input_tensors)
AttributeError: 'Node' object has no attribute 'output_masks'
I don't know what to even try at this point; any advice?