I'm attempting to create a TemporalFusionTransformer with my own data, but following this example.
I get this error when instantiating a TemporalFusionTransformer or using optimize_hyperparameters:
Error:
/usr/local/lib/python3.8/dist-packages/pytorch_forecasting/models/base_model.py in __init__(self, log_interval, log_val_interval, learning_rate, log_gradient_flow, loss, logging_metrics, reduce_on_plateau_patience, reduce_on_plateau_reduction, reduce_on_plateau_min_lr, weight_decay, optimizer_params, monotone_constaints, output_transformer, optimizer)
260 init_args = get_init_args(frame)
261 self.save_hyperparameters(
--> 262 {name: val for name, val in init_args.items() if name not in self.hparams and name not in ["self"]}
263 )
264
AttributeError: 'tuple' object has no attribute 'items'
My Code:
study = optimize_hyperparameters(
train_dataloader,
val_dataloader,
model_path="optuna_test",
n_trials=200,
max_epochs=50,
gradient_clip_val_range=(0.01, 1.0),
hidden_size_range=(8, 128),
hidden_continuous_size_range=(8, 128),
attention_head_size_range=(1, 4),
learning_rate_range=(0.001, 0.1),
dropout_range=(0.1, 0.3),
trainer_kwargs=dict(limit_train_batches=30),
reduce_on_plateau_patience=4,
use_learning_rate_finder=False, # use Optuna to find ideal learning rate or use in-built learning rate finder
)
tft = TemporalFusionTransformer.from_dataset(
training,
# not meaningful for finding the learning rate but otherwise very important
#learning_rate=0.03,
#hidden_size=16, # most important hyperparameter apart from learning rate
# number of attention heads. Set to up to 4 for large datasets
#attention_head_size=1,
#dropout=0.1, # between 0.1 and 0.3 are good values
#hidden_continuous_size=8, # set to <= hidden_size
#output_size=7, # 7 quantiles by default
#loss=metrics.quantile.QuantileLoss(),
# reduce learning rate if no improvement in validation loss after x epochs
#reduce_on_plateau_patience=4
)
I'm assuming something is wrong in my TimeSeriesDataSet instantiation, but can't figure it out:
#Create a TimeSeriesDataSet
max_prediction_length = 7*4*6 #24 weeks
training_cutoff = data["time_indx"].max() - max_prediction_length
training = TimeSeriesDataSet(
data[lambda x: x.time_indx <= training_cutoff],
group_ids=["group_id"],
target="Close",
time_idx="time_indx",
min_encoder_length=3,
max_encoder_length=30,
min_prediction_length=5,
max_prediction_length=max_prediction_length,
time_varying_known_reals=['Date', 'Open', 'High', 'Low', 'Volume'],
time_varying_unknown_reals=["Close"]
)
I've tried uninstalling and installing pytorch-lightning, pytorch-forecasting, but this didn't work.
Any ideas?
so I faced the same issue with previously working code that suddendly started failing with the same error. I was able to fix it by explicitly setting the pytorch-ligntning version to 1.8.6 (the most current one is 1.9.2 iirc which probably breaks something). Let me know if this was useful to you