Auto Syncing for Keys in Apache Geode

136 Views Asked by At

I have an Apache Geode setup, connected with external Postgres datasource. I have a scenario where I define an expiration time for a key. Let's say after T time the key is going to expire. Is there a way so that the keys which are going to expire can make a call to an external datasource and update the value incase the value has been changed? I want a kind of automatic syncing for my keys which are there in Apache Geode. Is there any interface which i can implement and get the desired behavior?

1

There are 1 best solutions below

5
On

I am not sure I fully understand your question. Are you saying that the values in the cache may possibly be more recent than what is currently stored in the database?

Whether you are using Look-Aside Caching, Inline Caching, or even Near Caching, Apache Geode combined with Spring would take care of ensuring the cache and database are kept in sync, to some extent depending on the caching pattern.

With Look-Aside Caching, if used properly, the database (i.e. primary System of Record (SOR), e.g. Postgres in your case) should always be the most current. (Look-Aside) Caching is secondary.

With Synchronous Inline Caching (using a CacheLoader/CacheWriter combination for Read/Write-Through) and in particular, with emphasis on CacheWriter, during updates (e.g. Region.put(key, value) cache operations), the DB is written to first, before the entry is stored (or overwritten) in the cache. If the DB write fails, then the cache entry is not written or updated. This is true each time a value for a key is updated. If the key has not be updated recently, then the database should reflect the most recent value. Once again, the database should always be the most current.

With Asynchronous Inline Caching (using AEQ + Listener, for Write-Behind), the updates for a cache entry are queued and asynchronously written to the DB. If an entry is updated, then Geode can guarantee that the value is eventually written to the underlying DB regardless of whether the key expires at some time later or not. You can persist and replay the queue in case of system failures, conflate events, and so on. In this case, the cache and DB are eventually consistent and it is assumed that you are aware of this, and this is acceptable for your application use case.

Of course, all of these caching patterns and scenarios I described above assume nothing else is modifying the SOR/database. If another external application or process is also modifying the database, separate from your Geode-based application, then it would be possible for Geode to become out-of-sync with the database and you would need to take steps to identify this situation. This is rather an issue for reads, not writes. Of course, you further need to make sure that stale cache entries does not subsequently overwrite the database on an update. This is easy enough to handle with optimistic locking. You could even trigger a cache entry remove on an DB update failure to have the cache refreshed on read.

Anyway, all of this is to say, if you applied 1 of the caching patterns above correctly, the value in the cache should already be reflected in the DB (or will be in the Async, Write-Behind Caching UC), even if the entry eventually expires.

Make sense?