In my Shiny app, users can upload a file which is stored as a reactive
dataframe. Inside the reactive expression that is shown below, I call an external time-consuming function (called performDigestion) which requires several seconds to complete.
fastafile_data <- reactive(){
inFile_fastafile <- input$fastaFile
req(inFile_fastafile)
ext <- tools::file_ext(inFile_fastafile$datapath)
validate(need(ext == "fasta", "Please upload a fasta file"))
dt.seq <- readAAStringSet(inFile_fastafile$datapath)
tbl <- performDigestion(dt.seq) ##the time-consuming step
return(tbl)
}
Next, I render a Datatable to present the results of the fastafile_data in the UI:
output$dt_fastafile <- DT::renderDataTable({
withProgress(message = 'Computation in progress, this step might take a while. Please wait...', {
incProgress(1/1)
fastafile_data()
})
}, options = list(scrollX = TRUE, dom = 'lfrtip', pageLength = 10, lengthMenu = c(10, 25, 50, 100)), rownames = FALSE)
In the UI, I also have two additional components (a sliderInput
and a numericInput
) and in the server-side I handle their values through two observeEvent
s .
What I would like to achieve is to update the fastafile_data dataframe every time any of these two additional components is triggered without reading the input$fastaFile again and re-running the time consuming performDigestion() function. I would ideally like to trigger the above reactive process again only when a new file is uploaded by the user.
I think the problem here is in my logic and/or there exists a smarter way to do it in ShinyR that I'm currently missing? Can you please point me to the right direction?
EDIT:
When I try to handle the reactive fastafile_data
through a second reactive fastafile_data_new
the first fastafile_data
is re-executed.
fastafile_data_new <- reactive({
dt <- fastafile_data()
##### the condition I'd like to apply
dt$identifiable <- ifelse(dt$length >= min_peptide_length$choice & dt$length <= max_peptide_length$choice & dt$`mass [Da]` < max_peptide_mass$choice, 1, 0)
return(dt)
})