AWS Glue Dynamic Frame columns from array

3.5k Views Asked by At

I have a nested json, structured as the following example: {'A':[{'key':'B','value':'C'},{'key':'D','value':'E'}]} Now I want to map this to the following schema:

|--A 
|--|--B
|--|--D

e.g. A structure recovered from a json like:

{'A':{'B':'C','D':'E'}}

The array in 'A' has no fixed number of entries, but the contained dicts always have the two keys 'key','value'

1

There are 1 best solutions below

6
On BEST ANSWER

Please find the script below.

from pyspark.sql.functions import lit, col, explode, create_map, collect_list
from itertools import chain

>>> sample.printSchema()
root
 |-- A: array (nullable = true)
 |    |-- element: struct (containsNull = true)
 |    |    |-- key: string (nullable = true)
 |    |    |-- value: string (nullable = true)


>>> final_df = (sample
...             .select(explode('A').alias("A"))
...             .withColumn("A",create_map("A.key", "A.value"))
...             .groupby().agg(collect_list("A").alias("A"))
... )
>>> final_df.printSchema()
root
 |-- A: array (nullable = true)
 |    |-- element: map (containsNull = false)
 |    |    |-- key: string
 |    |    |-- value: string (valueContainsNull = true)

>>> final_df.show(truncate=False)
+--------------------+
|A                   |
+--------------------+
|[[B -> C], [D -> E]]|
+--------------------+

>>> (final_df
...  .write
...  .format("json")
...  .mode("overwrite")
...  .save("sample_files/2020-09-29/out")
... )