So we have to move away from using SQL Server Machine Learning services as it only supports R 3.5.2 even for SQL Server 2019!
I am trying hard to go all 21st century and deploy some of our on prem R trained models as web service as described by one of the Microsoft evangelists David Smith (see code below).
Looking at r_environment I noticed to my horror that, if I do not use a custom docker image, predefine images only support R 3.6?! Is this correct? If so, how do I create a custom docker image and why does Microsoft suggest using Azure ML where there are also restrictions in terms of the R version!
PS:
Some code to possibly replicate my issues:
Train model locally:
library(datasets)
library(caret)
data(iris)
setwd("C:/Data")
index <- createDataPartition(iris$Species, p=0.80, list=FALSE)
testset <- iris[-index,]
trainset <- iris[index,]
model = train(Species ~ .,
data=trainset,
method="rpart",
trControl = trainControl(method = "cv"))
saveRDS(model, "model.rds")
I can deploy this model in Azure ML:
Scoring script score.r
library(jsonlite)
init <- function()
{
model_path <- Sys.getenv("AZUREML_MODEL_DIR")
model <- readRDS(file.path(model_path, "model.rds"))
message("iris classfication model loaded")
function(data)
{
vars <- as.data.frame(fromJSON(data))
prediction <- predict(model, newdata=vars)
toJSON(prediction)
}
}
Failing code:
library(azuremlsdk)
interactive_auth <- interactive_login_authentication(tenant_id="xxx")
ws <- get_workspace(
name = "amazing_work_space",
subscription_id = "xxx",
resource_group ="xxx",
auth = interactive_auth
)
model <- get_model(ws, name = "iris_classification")
r_env <- r_environment(name = 'myr_env',
version = '1')
inference_config <- inference_config(
entry_script = "score.R",
source_directory = ".",
environment = r_env)
aci_config <- aci_webservice_deployment_config(cpu_cores = 1, memory_gb = 0.5)
aci_service <- deploy_model(ws,
'xxx',
list(model),
inference_config,
aci_config)
wait_for_deployment(aci_service, show_output = TRUE)