I am having some issues getting the correct LFSR for my sequence(pattern), when I implement it as LFSR and the corresponding taps, it doesn't generate the sequence, any suggestions? The goal patt is {1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1};
My code following wikipedia's version for binary field (https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Massey_algorithm):
#include <stdio.h>
int main()
{
int patt[]={1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1};
int n=sizeof(patt)/sizeof(int);
int N=0, L=0, m=-1, b[n], c[n], d=0, t[n], j;
b[0]=1;
c[0]=1;
float val;
for(int i=1; i<n; i++){
b[i]=0;
c[i]=0;
//printf("b[%d]=%d, c[%d]=%d; ",i,b[i],i,c[i]);
}
while (N < n){
printf("N=%d, ",N);
d=c[0]*patt[N];//initializing the value of d
for(int i=1; i<=L; i++){
//printf("d = %d + %d*%d, ",d,c[i],patt[N-L]);
d=d ^ c[i]*patt[N-L];
//printf("d=%d \n",d);
}
printf("d=%d\n", d);
if (d==0){
printf("c=c\n\n");
}
else{
for(int i=0; i<n; i++){
t[i]=c[i];
}
j=0;
while(N-m+j<=n-1){
printf("c[%d-%d+%d]=c[%d-%d+%d]^b[%d]; c[%d]=c[%d]^b[%d], %d=%d^%d; ", N, m, j, N, m, j, j, N-m+j, N-m+j, j, c[N-m+j], c[N-m+j], b[j]);
c[N-m+j]=c[N-m+j]^b[j];//XOR operator: ^
printf("c=%d\n",c[N-m+j]);
j++;
}
printf("\n");
val=N;
val=val/2;
printf("L=%d, N=%d, N/2=%f \n",L, N, val);
if(L<= val){
printf("updating L, m & b\n\n");
L=N+1-L;
m=N;
for(int i=0; i<n; i++){
b[i]=t[i];
}
}
}
N++;
}
int CiSi=c[L]*patt[0];;
for(int i=1; i<L; i++){
CiSi=CiSi ^ c[L-i]*patt[i];//XORing
}
printf("CiSi = %d;", CiSi);
printf("c=");
for(int i=0; i<n; i++){
printf("%d ",c[i]);
}
return 0;
}
The answers per cycle:
N=0, d=1
c[0--1+0]=c[0--1+0]^b[0]; c[1]=c[1]^b[0], 0=0^1; c=1
c[0--1+1]=c[0--1+1]^b[1]; c[2]=c[2]^b[1], 0=0^0; c=0
c[0--1+2]=c[0--1+2]^b[2]; c[3]=c[3]^b[2], 0=0^0; c=0
c[0--1+3]=c[0--1+3]^b[3]; c[4]=c[4]^b[3], 0=0^0; c=0
c[0--1+4]=c[0--1+4]^b[4]; c[5]=c[5]^b[4], 0=0^0; c=0
c[0--1+5]=c[0--1+5]^b[5]; c[6]=c[6]^b[5], 0=0^0; c=0
c[0--1+6]=c[0--1+6]^b[6]; c[7]=c[7]^b[6], 0=0^0; c=0
c[0--1+7]=c[0--1+7]^b[7]; c[8]=c[8]^b[7], 0=0^0; c=0
c[0--1+8]=c[0--1+8]^b[8]; c[9]=c[9]^b[8], 0=0^0; c=0
c[0--1+9]=c[0--1+9]^b[9]; c[10]=c[10]^b[9], 0=0^0; c=0
c[0--1+10]=c[0--1+10]^b[10]; c[11]=c[11]^b[10], 0=0^0; c=0
c[0--1+11]=c[0--1+11]^b[11]; c[12]=c[12]^b[11], 0=0^0; c=0
L=0, N=0, N/2=0.000000
updating L, m & b
N=1, d=0
c=c
N=2, d=1
c[2-0+0]=c[2-0+0]^b[0]; c[2]=c[2]^b[0], 0=0^1; c=1
c[2-0+1]=c[2-0+1]^b[1]; c[3]=c[3]^b[1], 0=0^0; c=0
c[2-0+2]=c[2-0+2]^b[2]; c[4]=c[4]^b[2], 0=0^0; c=0
c[2-0+3]=c[2-0+3]^b[3]; c[5]=c[5]^b[3], 0=0^0; c=0
c[2-0+4]=c[2-0+4]^b[4]; c[6]=c[6]^b[4], 0=0^0; c=0
c[2-0+5]=c[2-0+5]^b[5]; c[7]=c[7]^b[5], 0=0^0; c=0
c[2-0+6]=c[2-0+6]^b[6]; c[8]=c[8]^b[6], 0=0^0; c=0
c[2-0+7]=c[2-0+7]^b[7]; c[9]=c[9]^b[7], 0=0^0; c=0
c[2-0+8]=c[2-0+8]^b[8]; c[10]=c[10]^b[8], 0=0^0; c=0
c[2-0+9]=c[2-0+9]^b[9]; c[11]=c[11]^b[9], 0=0^0; c=0
c[2-0+10]=c[2-0+10]^b[10]; c[12]=c[12]^b[10], 0=0^0; c=0
L=1, N=2, N/2=1.000000
updating L, m & b
N=3, d=0
c=c
N=4, d=0
c=c
N=5, d=0
c=c
N=6, d=1
c[6-2+0]=c[6-2+0]^b[0]; c[4]=c[4]^b[0], 0=0^1; c=1
c[6-2+1]=c[6-2+1]^b[1]; c[5]=c[5]^b[1], 0=0^1; c=1
c[6-2+2]=c[6-2+2]^b[2]; c[6]=c[6]^b[2], 0=0^0; c=0
c[6-2+3]=c[6-2+3]^b[3]; c[7]=c[7]^b[3], 0=0^0; c=0
c[6-2+4]=c[6-2+4]^b[4]; c[8]=c[8]^b[4], 0=0^0; c=0
c[6-2+5]=c[6-2+5]^b[5]; c[9]=c[9]^b[5], 0=0^0; c=0
c[6-2+6]=c[6-2+6]^b[6]; c[10]=c[10]^b[6], 0=0^0; c=0
c[6-2+7]=c[6-2+7]^b[7]; c[11]=c[11]^b[7], 0=0^0; c=0
c[6-2+8]=c[6-2+8]^b[8]; c[12]=c[12]^b[8], 0=0^0; c=0
L=2, N=6, N/2=3.000000
updating L, m & b
N=7, d=0
c=c
N=8, d=1
c[8-6+0]=c[8-6+0]^b[0]; c[2]=c[2]^b[0], 1=1^1; c=0
c[8-6+1]=c[8-6+1]^b[1]; c[3]=c[3]^b[1], 0=0^1; c=1
c[8-6+2]=c[8-6+2]^b[2]; c[4]=c[4]^b[2], 1=1^1; c=0
c[8-6+3]=c[8-6+3]^b[3]; c[5]=c[5]^b[3], 1=1^0; c=1
c[8-6+4]=c[8-6+4]^b[4]; c[6]=c[6]^b[4], 0=0^0; c=0
c[8-6+5]=c[8-6+5]^b[5]; c[7]=c[7]^b[5], 0=0^0; c=0
c[8-6+6]=c[8-6+6]^b[6]; c[8]=c[8]^b[6], 0=0^0; c=0
c[8-6+7]=c[8-6+7]^b[7]; c[9]=c[9]^b[7], 0=0^0; c=0
c[8-6+8]=c[8-6+8]^b[8]; c[10]=c[10]^b[8], 0=0^0; c=0
c[8-6+9]=c[8-6+9]^b[9]; c[11]=c[11]^b[9], 0=0^0; c=0
c[8-6+10]=c[8-6+10]^b[10]; c[12]=c[12]^b[10], 0=0^0; c=0
L=5, N=8, N/2=4.000000
N=9, d=0
c=c
N=10, d=0
c=c
N=11, d=0
c=c
N=12, d=1
c[12-6+0]=c[12-6+0]^b[0]; c[6]=c[6]^b[0], 0=0^1; c=1
c[12-6+1]=c[12-6+1]^b[1]; c[7]=c[7]^b[1], 0=0^1; c=1
c[12-6+2]=c[12-6+2]^b[2]; c[8]=c[8]^b[2], 0=0^1; c=1
c[12-6+3]=c[12-6+3]^b[3]; c[9]=c[9]^b[3], 0=0^0; c=0
c[12-6+4]=c[12-6+4]^b[4]; c[10]=c[10]^b[4], 0=0^0; c=0
c[12-6+5]=c[12-6+5]^b[5]; c[11]=c[11]^b[5], 0=0^0; c=0
c[12-6+6]=c[12-6+6]^b[6]; c[12]=c[12]^b[6], 0=0^0; c=0
L=5, N=12, N/2=6.000000
updating L, m & b
CiSi = 0;
CiSi = 0; Testing the values mentioned as a result of the algorithm looks correct because is equal to zero, but
c=1 1 0 1 0 1 1 1 1; excluding the last 4 zeros due to their values as zeros
c=1 1 0 1 0 1 1 1 1, this are the coefficients of the polynomial starting from left to right: C0,..., Ck: 1 + x^2 + x^4 + x^5 + x^6 + x^7
When I implement this values the results are NOT RIGHT
Implementation of the LFSR with the taps in the corresponding positions, x0 is excluded according to https://en.wikipedia.org/wiki/Linear-feedback_shift_register and also Wang Laung-Terng, Wu Cheng-Wen and W. Xiaoqing, "VLSI Test Principles and Architectures - Design for Testability", 2006:
%Matlab source code
clear all;
seed=[1 1 0 0 0 0 1 0];
seed_sz=size(seed);
%Loop to initialize a array
for i=1:50
A{i}=1:seed_sz(1,2);
A{i}(1,1:end)=0;
end
filename='LFSR rightshift no x0 c program.xlsx';
for i=1:50
A{i}=seed;
xlswrite(filename,A{i},'1',['A',int2str(i)]);
XOR_output=xor(seed(1,8),seed(1,7));
XOR_output=xor(XOR_output,seed(1,6));
XOR_output=xor(XOR_output,seed(1,5));
XOR_output=xor(XOR_output,seed(1,3));
XOR_output=xor(XOR_output,seed(1,1));
%Right shift the seed
seed=circshift(seed,1);
seed(1,1)=XOR_output;
end
Compared to the Wikipedia pseudocode that it aims at implementing, the question's code has two clear discrepancies (at least the second is a fatal bug):
d=c[0]*patt[N]
should bed=patt[N]
to match d ← sN…d=d ^ c[i]*patt[N-L]
should bed=d ^ c[i]*patt[N-i]
to match the other terms of d ← sN ⊕ c1sN−1 ⊕ c2sN−2 ⊕ … ⊕ cLsN−LAs an aside the code does not show the final
L
, that is the length of the minimal LFSR for the stream. But thatL
is also the index of the last1
in the output, so we can get away with that omission.With these changes the code outputs
c=1 0 1 0 1 1 0 0 0 0 0 0 0
, that is an LFSR withL
=5 bits and the recurrence si ← si-2 ⊕ si-4 ⊕ si-5, or equivalently si+5 ← si+3 ⊕ si+1 ⊕ si. That indeed matches the sequence! Applied to the 5 first given terms it computes the next 8 ones:Interpretation of the program's output:
1
in the output tells the width of the LFSR, and the rest should be ignored;1
digits in the output, except the leftmost, correspond to the terms to XOR in a Fibonnaci LFSR, from most recent to oldest;1
and corresponds to the next term computed;1
digits in reading order correspond to the terms of the Fibonacci polynomial from 1 to xL (here, 1+x2+x4+x5), or equivalently to the terms of the Galois polynomial from xL to 1 (here, x5+x3+x1+1)The initial state in Fibonacci convention is simply the first
L
terms of the given si, that ispatt[i]
in the question's code.Here is a streamlined version of the code with less and clearer output, perusing
for
to clarify the intent, sticking to variable names in the original pseudocode, compatible with more C compilers, using Boolean operators when possible, staying away from floating point, and making loops with minimalist end conditions. It seems to work just fine in the few tests I made.I have a critic on the Wikipedia pseudocode and its transcription to code: indexes are going in reverse directions in the sequence under analysis si and the polynomial being constructed ci; that seems to only create complications.