I have implemented Bicubic Interpolation taking the reference of these slides. Slide number 118 gives the formulation to compute the Bicubic Interpolation.
I have implemented my code in the same way keeping P(dr-m) and P(n-dc) as:
P_dr = 1/6*( (max(d_r-m+2,0)^3) -4*(max(d_r-m+1,0)^3) -6*(max(d_r-m,0)^3) -4*(max(d_r-m-1,0)^3));
P_dc = 1/6*( (max(n-d_c+2,0)^3) -4*(max(n-d_c+1,0)^3) -6*(max(n-d_c,0)^3) -4*(max(n-d_c-1,0)^3));
where the max function defines by Q(X) as defined in the slide.
But when I run the code, I get the following image:
But when I change my normalizing factor to 1/32, I get:
My original image is this:
Can someone point as to where I am going wrong?
The code snippet is as follows:
for i = 5:r_new-4
for j = 5:c_new-4
x = i/SF;
y = j/SF;
ro = round(x);
co = round(y);
d_r = x - ro;
d_c = y - co;
temp = 0;
for m = -1:2
for n = -1:2
P_r = 1/32*( (max(d_r-m+2,0)^3) - 4*(max(d_r-m+1,0)^3) - 6*(max(d_r-m,0)^3) - 4*(max(d_r-m-1,0)^3));
P_c = 1/32*( (max(n-d_c+2,0)^3) - 4*(max(n-d_c+1,0)^3) - 6*(max(n-d_c,0)^3) - 4*(max(n-d_c-1,0)^3));
temp = temp + I(ro+m,co+n)*P_r*P_c;
end
end
I_new(i,j) = temp;
end
end