Broadcast and concatenate ragged tensors

1.4k Views Asked by At

I have a ragged tensor of dimensions [BATCH_SIZE, TIME_STEPS, EMBEDDING_DIM]. I want to augment the last axis with data from another tensor of shape [BATCH_SIZE, AUG_DIM]. Each time step of a given example gets augmented with the same value.

If the tensor wasn't ragged with varying TIME_STEPS for each example, I could simply reshape the second tensor with tf.repeat and then use tf.concat:

import tensorflow as tf


# create data
# shape: [BATCH_SIZE, TIME_STEPS, EMBEDDING_DIM]
emb = tf.constant([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [0, 0, 0]]])
# shape: [BATCH_SIZE, 1, AUG_DIM]
aug = tf.constant([[[8]], [[9]]])

# concat
aug = tf.repeat(aug, emb.shape[1], axis=1)
emb_aug = tf.concat([emb, aug], axis=-1)

This doesn't approach work when emb is ragged since emb.shape[1] is unknown and varies across examples:

# rag and remove padding
emb = tf.RaggedTensor.from_tensor(emb, padding=(0, 0, 0))

# reshape for augmentation - this doesn't work
aug = tf.repeat(aug, emb.shape[1], axis=1)

ValueError: Attempt to convert a value (None) with an unsupported type (<class 'NoneType'>) to a Tensor.

The goal is to create a ragged tensor emb_aug which looks like this:

<tf.RaggedTensor [[[1, 2, 3, 8], [4, 5, 6, 8]], [[1, 2, 3 ,9]]]>

Any ideas?

2

There are 2 best solutions below

0
On BEST ANSWER

The easiest way to do this is to just make your ragged tensor a regular tensor by using tf.RaggedTensor.to_tensor() and then do the rest of your solution. I'll assume that you need the tensor to remain ragged. The key is to find the row_lengths of each batch in your ragged tensor, and then use this information to make your augmentation tensor ragged.

Example:

import tensorflow as tf


# data
emb = tf.constant([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [0, 0, 0]]])
aug = tf.constant([[[8]], [[9]]])

# make embeddings ragged for testing
emb_r = tf.RaggedTensor.from_tensor(emb, padding=(0, 0, 0))

print(emb_r.shape)
# (2, None, 3)

Here we'll use a combination of row_lengths and sequence_mask to create a new ragged tensor.

# find the row lengths of the embeddings
rl = emb_r.row_lengths()

print(rl)
# tf.Tensor([2 1], shape=(2,), dtype=int64)

# find the biggest row length
max_rl = tf.math.reduce_max(rl)

print(max_rl)
# tf.Tensor(2, shape=(), dtype=int64)

# repeat the augmented data `max_rl` number of times
aug_t = tf.repeat(aug, repeats=max_rl, axis=1)

print(aug_t)
# tf.Tensor(
# [[[8]
#   [8]]
# 
#  [[9]
#   [9]]], shape=(2, 2, 1), dtype=int32)

# create a mask
msk = tf.sequence_mask(rl)

print(msk)
# tf.Tensor(
# [[ True  True]
#  [ True False]], shape=(2, 2), dtype=bool)

From here we can use tf.ragged.boolean_mask to make the augmented data ragged

# make the augmented data a ragged tensor
aug_r = tf.ragged.boolean_mask(aug_t, msk)
print(aug_r)
# <tf.RaggedTensor [[[8], [8]], [[9]]]>

# concatenate!
output = tf.concat([emb_r, aug_r], 2)
print(output)
# <tf.RaggedTensor [[[1, 2, 3, 8], [4, 5, 6, 8]], [[1, 2, 3, 9]]]>

You can find the list of tensorflow methods that support ragged tensors here

1
On

Ragged Tensors can be constructed from row lengths directly. The values input is a flat (with respect to the future ragged dimension not all other dimensions) tensor that can be constructed using tf.repeat, again using the row_lengths to find the appropriate number of repeats per sample!

ragged_lengths = emb.row_lengths()
aug = tf.RaggedTensor.from_row_lengths(
         values=tf.repeat(aug, ragged_lengths, axis=0),
         row_lengths=ragged_lengths)
emb_aug = tf.concat([emb, aug], axis=-1)