I have written a c++ program to implement lazy binary operations.
The program is supposed to work as follows: create a binary tree with operations, each time we use a tree in a binary operation with something else, we put both things as left and right children of the new operation. When I call operator T
, it entails another operator T
recursively of each child in case it is also an operator, or otherwise pass it to the function associated with the template parameter (F
).
Code
#include <iostream>
#include <cassert>
#include <vector>
static const auto &add = [](auto a, auto b) {return a + b;};
static const auto &sub = [](auto a, auto b) {return a - b;};
static const auto &mul = [](auto a, auto b) {return a * b;};
static const auto &frac = [](auto a, auto b) {return a / b;};
template <class A, class B, class F> class BinaryOP;
template <class A, class B> using Addition = BinaryOP <A, B, decltype(add)>;
template <class A, class B> using Subtraction = BinaryOP <A, B, decltype(sub)>;
template <class A, class B> using Multiplication = BinaryOP <A, B, decltype(mul)>;
template <class A, class B> using Division = BinaryOP <A, B, decltype(frac)>;
static const auto make_binop = [](auto a, auto b, auto &F) { return BinaryOP<decltype(a), decltype(b), decltype(F)>(a, b, F); };
static const auto make_add = [](auto a, auto b) { return make_binop(a, b, add); };
static const auto make_sub = [](auto a, auto b) { return make_binop(a, b, sub); };
static const auto make_mul = [](auto a, auto b) { return make_binop(a, b, mul); };
static const auto make_div = [](auto a, auto b) { return make_binop(a, b, frac); };
template <class T>
struct is_recursable {
private:
typedef char yes;
typedef short no;
template <typename C> static yes test(decltype(C::RECURSE_ME)*);
template <typename C> static no test(...);
public:
enum { value = sizeof(test<T>(0)) == sizeof(yes) };
};
template <class A, class B, class F>
class BinaryOP {
protected:
typedef BinaryOP <A, B, F> THIS_T;
const A lhs;
const B rhs;
F func;
public:
static const bool RECURSE_ME;
constexpr BinaryOP(const A &lhs, const B &rhs, F &func):
lhs(lhs), rhs(rhs), func(func)
{}
virtual ~BinaryOP()
{}
template <class T>
constexpr operator T() const {
auto a = is_recursable<A>::value ? T(lhs) : lhs;
auto b = is_recursable<B>::value ? T(rhs) : rhs;
return func(a, b);
}
template <class R>
constexpr Addition <THIS_T, R> operator+(const R &b) {
return make_add(*this, b);
}
template <class R>
constexpr Subtraction <THIS_T, R> operator-(const R &b) {
return make_sub(*this, b);
}
template <class R>
constexpr Multiplication <THIS_T, R> operator*(const R &b) {
return make_mul(*this, b);
}
template <class R>
constexpr Division <THIS_T, R> operator/(const R &b) {
return make_div(*this, b);
}
friend std::ostream &operator<<(std::ostream &os, const THIS_T &tree) {
os << "{" << tree.lhs << ":" << is_recursable<A>::value << ", " << tree.rhs << ":" << is_recursable<B>::value << "}";
return os;
}
void printrec() const {
printf("1: {");
if(is_recursable<A>::value == 1)
/* printf("1 %s", typeid(B).name()); */
lhs.printrec();
else
printf("0");
printf(", ");
if(is_recursable<B>::value == 1)
/* printf("1 %s", typeid(B).name()); */
rhs.printrec();
else
printf("0");
printf("}");
}
};
class Matrix {
typedef std::vector <float> vec_t;
typedef std::vector <std::vector <float> > mat_t;
mat_t mat;
public:
Matrix(mat_t mat):
mat(mat)
{}
Matrix(size_t h, size_t w):
mat(mat_t(h, vec_t(w)))
{
for(size_t i = 0; i < h; ++i)
for(size_t j = 0; j < w; ++j)
mat[i][j] = (i == j);
}
size_t height() const { return mat.size(); }
size_t width() const { return (height() == 0) ? 0 : mat.front().size(); }
Matrix operator*(const Matrix &other) {
Matrix res(height(), other.width());
assert(width() == other.height());
for(size_t i = 0; i < height(); ++i) {
for(size_t j = 0; j < other.width(); ++j) {
float sum = 0.;
for(size_t k = 0; k < width(); ++k) {
sum += mat[i][k] * other.mat[k][j];
}
res.mat[i][j] = sum;
}
}
return res;
}
Matrix operator*(const float &scalar) {
Matrix res(height(), width());
for(size_t i = 0; i < height(); ++i) for(size_t j = 0; j < width(); ++j) res.mat[i][j] = mat[i][j] * scalar;
return res;
}
friend std::ostream &operator<<(std::ostream &os, const Matrix &m) {
for(size_t i = 0; i < m.height(); ++i) {
for(size_t j = 0; j < m.width(); ++j) {
os << m.mat[i][j] << " ";
}
os << std::endl;
}
return os;
}
};
int main() {
auto tree = make_add(2, 3) + make_sub(5, 6) * make_add(3, 0) / 3; // = 4
std::cout << tree << std::endl;
std::cout << int(tree) << std::endl;
Matrix m(10, 10), n(10, 10);
auto mattree = make_mul(m, n) + 6;
std::cout << mattree << std::endl;
std::cout << "operator is recursable: " << is_recursable<Addition<float, Matrix> >::value << std::endl;
std::cout << "matrix is recursable: " << is_recursable<Matrix>::value << std::endl;
std::cout << "float is recursable: " << is_recursable<float>::value << std::endl;
std::cout << "mattree is recursable: " << is_recursable<decltype(mattree)>::value << std::endl;
mattree.printrec();
/* std::cout << (mattree.operator Matrix()) << std::endl; */
}
Compiling
c++ -flto -O2 -std=c++1y binary_operator.cpp
clang
binary_operator.cpp:93:10: error: member reference base type 'const int' is not a structure or union
rhs.printrec();
~~~^~~~~~~~~
binary_operator.cpp:158:11: note: in instantiation of member function 'BinaryOP<BinaryOP<Matrix, Matrix, const <lambda at binary_operator.cpp:7:26> &>, int, const <lambda at binary_operator.cpp:5:26> &>::printrec' requested here
mattree.printrec();
^
binary_operator.cpp:87:11: error: no member named 'printrec' in 'Matrix'
lhs.printrec();
~~~ ^
binary_operator.cpp:87:11: note: in instantiation of member function 'BinaryOP<Matrix, Matrix, const <lambda at binary_operator.cpp:7:26> &>::printrec' requested here
lhs.printrec();
^
binary_operator.cpp:158:11: note: in instantiation of member function 'BinaryOP<BinaryOP<Matrix, Matrix, const <lambda at binary_operator.cpp:7:26> &>, int, const <lambda at binary_operator.cpp:5:26> &>::printrec' requested here
mattree.printrec();
^
binary_operator.cpp:93:11: error: no member named 'printrec' in 'Matrix'
rhs.printrec();
~~~ ^
3 errors generated.
make: *** [binary_operator] Error 1
gcc
binary_operator.cpp: In instantiation of 'void BinaryOP<A, B, F>::printrec() const [with A = BinaryOP<Matrix, Matrix, const<lambda(auto:5, auto:6)>&>; B = int; F = const<lambda(auto:1, auto:2)>&]':
binary_operator.cpp:158:20: required from here
binary_operator.cpp:93:11: error: request for member 'printrec' in '((const BinaryOP<BinaryOP<Matrix, Matrix, const<lambda(auto:5, auto:6)>&>, int, const<lambda(auto:1, auto:2)>&>*)this)->BinaryOP<BinaryOP<Matrix, Matrix, const<lambda(auto:5, auto:6)>&>, int, const<lambda(auto:1, auto:2)>&>::rhs', which is of non-class type 'const int'
rhs.printrec();
~~~~^~~~~~~~
binary_operator.cpp: In instantiation of 'void BinaryOP<A, B, F>::printrec() const [with A = Matrix; B = Matrix; F = const<lambda(auto:5, auto:6)>&]':
binary_operator.cpp:87:7: required from 'void BinaryOP<A, B, F>::printrec() const [with A = BinaryOP<Matrix, Matrix, const<lambda(auto:5, auto:6)>&>; B = int; F = const<lambda(auto:1, auto:2)>&]'
binary_operator.cpp:158:20: required from here
binary_operator.cpp:87:11: error: 'const class Matrix' has no member named 'printrec'
lhs.printrec();
~~~~^~~~~~~~
binary_operator.cpp:93:11: error: 'const class Matrix' has no member named 'printrec'
rhs.printrec();
~~~~^~~~~~~~
shell returned 1
But if I change printrec by changing comments (see the code), I will get:
{{2:0, 3:0}:1, {{{5:0, 6:0}:1, {3:0, 0:0}:1}:1, 3:0}:1}
4
{{1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
:0, 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
:0}:1, 6:0}
operator is recursable: 1
matrix is recursable: 0
float is recursable: 0
mattree is recursable: 1
1: {1 i, 0}
Clearly, when I try to evaluate (or print) the tree recursively, it fails to compile with an error as it can't find the same method (e.g. printrec) in a leaf (non-operator) class, but it seems (see is_recursive
) that it is aware of which types are there in compile-time.
Until
constexpr if
exists you cannot do this. Reason being is that the compiler must assume that both branches are possible even if one or the other is not reachable--yeah, seems like it should be able to tell, but it's not allowed to by the language. You need to use tag dispatching or some other compile time construct.See this answer