I have a df1 with variable names v1, v2 and v3. In df2 I have variables ID, Days, Hours and BT. For each ID, I have 7 days and for each day I have 24 Hours. I want to check the values of v1 , v2 and v3 in ID column of df2 and calculate the mean value by adding the BT values of each v1, v2, and v3 for each Day and Hour combination and then taking the mean.
Suppose df1 has following value
v1 | v2 | v3 |
---|---|---|
1 | 2 | 2 |
1 | 3 | 2 |
1 | 4 | 2 |
Table2:
ID | Days | Hours | BT |
---|---|---|---|
1 | 1 | 00 | 18 |
1 | 1 | 01 | 20 |
1 | 1 | 02 | 17 |
: | : | : | : |
1 | 7 | 23 | 15 |
2 | 1 | 00 | 11 |
2 | 1 | 01 | 08 |
: | : | : | : |
From Table 2 I am assuming the following criteria for the first row of df1
If I have BT values for each combination of v1, v2, and v3 for Day 1, Hour 00,
v1=1, Day=1, Hour=00 = 18
v2=2, Day=1, Hour=00 = 11
v3=2, Day=1, Hour=00 = 11
It will give me a the mean value of (18+11+11)/3 = 13.3
Hour 01,
v1=1, Day=1, Hour=01 = 20
v2=2, Day=1, Hour=01 = 08
v3=2, Day=1, Hour=01 = 08
(20+08+08)/3 = 12.0 and so on for all days and hours. 13.3 amd 12.0 are in the resultant table
Required Resultant Table
v1 | v2 | v3 | Days | Hours | Mean_BT |
---|---|---|---|---|---|
1 | 2 | 2 | 1 | 0 | 13.3 |
1 | 2 | 2 | 1 | 1 | 12.0 |
1 | 2 | 2 | 1 | 2 | 17.0 |
1 | 2 | 2 | 1 | 3 | 15.0 |
: | : | : | : | : | : |
1 | 3 | 2 | 1 | 0 | 12.3 |
1 | 3 | 2 | 1 | 1 | 15.3 |
1 | 3 | 2 | 1 | 2 | 5.3 |
: | : | : | : | : | : |
and so on for 840 Observatinos.
Below is the code to generate table 1 and table 2.
set.seed(0)
table1 <- data.frame(
v1 = sample(1:5, 5, replace = TRUE),
v2 = sample(1:5, 5, replace = TRUE),
v3 = sample(1:5, 5, replace = TRUE)
)
# Table 2
table2 <- expand.grid(
ID = 1:5,
Days = 1:7,
Hours = 0:23
)
table2$BT <- sample(1:25, nrow(table2), replace = TRUE)
# Displaying Table 2
print("Table 2:")
print(table2)
Below is the code I wrote but not sure why its giving me wrong mean.
mean_BT_list <- list()
# Iterate over the rows of Table 1
for (i in 1:nrow(table1)) {
v1_val <- table1$v1[i]
v2_val <- table1$v2[i]
v3_val <- table1$v3[i]
# Calculate Mean_BT for each day and hour and store in the list
for (day in 1:7) {
for (hour in 0:23) {
mean_BT <- mean(table2$BT[table2$Days == day & table2$Hours == hour], na.rm = TRUE)
mean_BT_list[[length(mean_BT_list) + 1]] <- data.frame(v1 = v1_val, v2 = v2_val, v3 = v3_val, Days = day, Hours = hour, Mean_BT = mean_BT)
}
}
}