We have complex template classes that have some methods which will not work with certain policies or types. Therefore, when we detect those types (at compile time, using type-traits) we fire a static assertion with a nice message.
Now we do a lot of manual template instantiation as well. Partly it is so that the methods are forced to compiler to syntax check the methods. It also reduces compile time for the library user. The problem is that the static assertions are always fired and consequently we cannot manually instantiate the template class in question.
Is there a workaround for this?
EDIT: To make it clearer, here is an example (the explicit instantiation in this case will fail on someFunc1():
// header
template <typename T>
class someClass
{
void someFunc() {}
void someFunc1() { static_assert(false, assertion_failed); }
};
// source
template someClass<int>; // Explicit instantiation
EDIT2: Here is another example. This time you can compile it to see what I mean. First compile right away. The code should compile. Then Uncomment [2] and the static assertion should fire. Now comment out [2] and Uncomment [1]. The static assertion will fire because you are explicitly instantiating the template. I want to avoid removing explicit instantiation because of the benefits that come with it (see above for benefits).
namespace Loki
{
template<int> struct CompileTimeError;
template<> struct CompileTimeError<true> {};
}
#define LOKI_STATIC_CHECK(expr, msg) \
{ Loki::CompileTimeError<((expr) != 0)> ERROR_##msg; (void)ERROR_##msg; }
template <typename T>
class foo
{
public:
void func() {}
void func1() { LOKI_STATIC_CHECK(sizeof(T) == 4, Assertion_error); }
};
template foo<int>;
//template foo<double>; // [1]
int main()
{
foo<int> a;
a.func1();
foo<double> b;
//b.func1(); //[2]
return 0;
}
I did not get an opportunity to test
enable_if
as suggested by bobah but I did come up with a solution that does not require boost and that satisfies my original requirement to a good extent (I say good and not full, will explain at the end)The solution is to put a dummy template on the code that will fail if compiled under some selected types and is fine under others. So:
In all of my template code, these kind of functions (i.e. the ones that have static asserts OR work on some types and may fail on others by using type traits [in which case there is a selection of several different functions for different types]) are hidden from the client. So in my implementation, adding the extra
dummy parameter
is an OK compromise.As a bonus, it lets me know that this function is designed to be used by only certain types. Furthermore, my original problem of explicit instantiation is solved by this simple technique.