There is a vendor whose software I'd like to work with. They have a code base which they can only compile using IAR Embedded Workbench (as far as I know, their code does not compile with GCC). Unfortunately their hardware only works with their software stack, so I don't really have a choice about whether or not I'd like to use it. They distribute this code as a .a
static library file (and accompanying headers) compiled for the ARM Cortex-M4 CPU. (They don't want to distribute sources.) For the sake of this discussion, let's call it evil_sw_stack.a
.
I'd like to use this piece of code but I don't have an IAR license and have zero expertise with IAR. I'd like to use GCC.
Is there a way to make IAR produce such a static library that GCC can link to? What kind of compiler option would the vendor need to use to produce such a binary?
(I would guess that the ABI of the resulting binary can be somehow specified and set to a setting which statisfies GCC. )
Example usage of GCC
Their default software stack is very GCC-friendly, this specific one is the only one in their offering which isn't. Generally, I can compile a simple piece of example code if I have the following:
startup_(devicename).S
: GCC-specific assembly filesystem_(devicename).c
(devicename).ld
: linker script- Some header files for the specific device
For example, I can compile a simple piece of example like this:
$ arm-none-eabi-gcc helloworld.c startup_(devicename).S system_(devicename).c -T (devicename).ld -o helloworld -D(devicename) -I. -fno-builtin -ffunction-sections -fdata-sections -mfpu=fpv4-sp-d16 -mfloat-abi=softfp -mcpu=cortex-m4 -mthumb -mno-sched-prolog -Wl,--start-group -lgcc -lc -lnosys -Wl,--end-group
So far, so good. No warnings, no errors.
How I try to use the static library
For the sake of this discussion, let's call it evil_sw_stack.a
.
This is how I attempted to use it:
$ arm-none-eabi-gcc evil_sw_stack.a helloworld.c startup_(devicename).S system_(devicename).c -T (devicename).ld -o helloworld -D(devicename) -I. -fno-builtin -ffunction-sections -fdata-sections -mfpu=fpv4-sp-d16 -mfloat-abi=softfp -mcpu=cortex-m4 -mthumb -mno-sched-prolog -Wl,--start-group -lgcc -lc -lnosys -Wl,--end-group
Unfortunately this complains about multiple definitions of a bunch of functions that are defined in system_(devicename).c
. Maybe they accidentally compiled that into this library? Or maybe IAR just compiled it this way? Now, if I try to remove system_(devicename).c
from the GCC command line and simply link to the .a
file, I get these errors:
/usr/lib/gcc/arm-none-eabi/5.2.0/../../../../arm-none-eabi/bin/ld: warning: thelibrary.a(startup_chipname.o) uses 2-byte wchar_t yet the output is to use 4-byte wchar_t; use of wchar_t values across objects may fail
undefined reference to `__iar_program_start'
undefined reference to `CSTACK$$Limit'
undefined reference to `__iar_program_start'
Poking the file with readelf
gets me nowhere:
$ readelf -h evil_sw_stack.a
readelf: Error: evil_sw_stack.a: did not find a valid archive header
Interestingly though, this seems to be getting somewhere:
$ arm-none-eabi-ar x evil_sw_stack.a
Now I've got a bunch of object files which do have ELF headers according to readelf
, and yup, they did compile a startup file (of another of their devices) into the library... I'm wondering why, but I think this is a mistake.
This also works:
$ arm-none-eabi-objdump -t evil_sw_stack_objfile.o
So now the question is, is it safe to try to compile these object files into my own application using GCC? According to this other SO question, the object file formats are not compatible.
I assume that the startup code is mistakenly compiled into the library. I can delete it:
$ arm-none-eabi-ar d evil_sw_stack.a startup_(otherdevicename).o
$ arm-none-eabi-ar d evil_sw_stack.a system_(otherdevicename).o
Now I get an evil_sw_stack.a
which gcc can accept as an input without complaining.
However, there is one thing that still worries me. When I use the object files instead of the static library, I get these warnings:
/usr/lib/gcc/arm-none-eabi/5.2.0/../../../../arm-none-eabi/bin/ld: warning: evil_objfile.o uses 2-byte wchar_t yet the output is to use 4-byte wchar_t; use of wchar_t values across objects may fail
/usr/lib/gcc/arm-none-eabi/5.2.0/../../../../arm-none-eabi/bin/ld: warning: evil_objfile.o uses 32-bit enums yet the output is to use variable-size enums; use of enum values across objects may fail
So it seems that evil_sw_stack.a
was compiled with (the IAR equivalents of) -fno-short-enums
and -fshort-wchar
. GCC doesn't complain about this when I use evil_sw_stack.a
at its command line but it does complain when I try to use any object file that I extracted from the library. Should I worry about this?
I don't use wchar_t
in my code so I believe that one doesn't matter, but I would like to pass enums between my code and the library.
Update
Even though the linker doesn't complain, it doesn't work when I actually call some functions from the static library. In that case, make sure to put the libraries in the correct order when you call the linker. According to the accepted answer to this question, they need to be in reverse order of dependency. After doing this, it still misses some IAR crap:
undefined reference to `__aeabi_memclr4'
undefined reference to `__aeabi_memclr'
undefined reference to `__aeabi_memmove'
undefined reference to `__aeabi_memset4'
undefined reference to `__aeabi_memset'
undefined reference to `__iar_vla_alloc2'
undefined reference to `__iar_vla_dealloc2'
undefined reference to `__aeabi_memclr4'
I've found out that the __aeabi
functions are defined in libgcc
but even though I link to libgcc too, the definition in libgcc
doesn't seem to be good enough for the function inside evil_sw_stack.a
.
EDIT: after some googling around, it seems that arm-none-eabi-gcc
doesn't support these specific __aeabi
functions. Take a look at this issue.
Anyway, after taking a look at ARM's runtime ABI docs, the missing __aeabi
functions can be trivially implemented using their standard C library equivalents. But I'm not quite sure how __iar_vla_alloc2
and __iar_vla_dealloc2
should work and couldn't find any documentation on them online. The only thing I found out is that VLA means "variable length array".
So, it seems that this will never work unless the chip vendor can compile their static library in such a way that it doesn't use these symbols. Is that right?
Disclaimer
I'd prefer not to disclose who the vendor is and not to disclose which product I work with. They are not proud that this thing doesn't work properly and asked me not to. I'm asking this question to help and not to discredit them.