If I assign a value, 'some value'
to one index of a dataframe, the other indexes for that column return NaN
. I would later like to loop through the dataframe index and change the value from NaN
. I am trying to check with the math.isnan()
, but it wants a float as in input. What function can I use to perform this check?
import pandas as pd
import math
BabyDataSet = [['Bob', 968], ['Jessica', 155], ['Mary', 77], ['John', 578], ['Mel', 973]]
df = pd.DataFrame(data=BabyDataSet, columns=['Names', 'Births'])
df.ix[1, 'MyValue'] = 'some value'
for index, Name in df.iterrows():
if math.isnan(df.ix[index, 'MyValue']):
df.ix[1, 'MyValue'] = 'some other value'
print df
Desired Output:
Names Births MyValue
0 Bob 968 some other value
1 Jessica 155 some value
2 Mary 77 some other value
3 John 578 some other value
4 Mel 973 some other value
Just use
pandas
own fillna():If you want to change only a specific column you can provide a dictionay:
You can even change NaNs in different columns to different values: