I have a function to handle deployment of a Model from an Experiment to the Model Registry. I copied code from the example in the documentation and run it on a docker container on a Google Compute Engine Instance but I am getting an error:
Traceback (most recent call last):
File "/app/train.py", line 214, in <module>
deploy_model_to_staging(client=client, run=training, run_date=args.run_date)
File "/app/train.py", line 162, in deploy_model_to_staging
client.create_model_version(MODEL_NAME, source, run_id, description)
File "/usr/local/lib/python3.9/site-packages/mlflow/tracking/client.py", line 2658, in create_model_version
return self._create_model_version(
File "/usr/local/lib/python3.9/site-packages/mlflow/tracking/client.py", line 2575, in _create_model_version
return self._get_registry_client().create_model_version(
File "/usr/local/lib/python3.9/site-packages/mlflow/tracking/_model_registry/client.py", line 193, in create_model_version
tags = [ModelVersionTag(key, str(value)) for key, value in tags.items()]
AttributeError: 'str' object has no attribute 'items'
The function being called is:
def deploy_model_to_staging(
client: mlflow.client.MlflowClient, run: mlflow.entities.Run, run_date: str
) -> None:
"""
Deploy model to Model Registry with stage "Staging".
Args:
client (mlflow.client.MlflowClient): MLflow Client.
run (mlflow.entities.Run): MLflow Run for training.
"""
description = f"Model trained on date {run_date}"
run_id = run.info.run_id
print(f"Creating Model Version for Run ID: {run_id}")
logging.info(f"Creating Model Version for Run ID: {run_id}")
runs_uri = f"runs:/{run_id}/model" # URI for the training run.
source = RunsArtifactRepository.get_underlying_uri(runs_uri)
client.create_model_version(MODEL_NAME, source, run_id, description)
version = client.search_model_version(filter_string=f"run_id='{run_id}'")[0].version
print(f"Model Version {version} created.")
logging.info(f"Model Version {version} created.")
client.transition_model_version_stage(
name=MODEL_NAME, version=version, stage="Staging"
)
print(f"Model Version {version} transitioned to Staging.")
logging.info(f"Model Version {version} transitioned to Staging.")
Does anyone know what is causing the Attribute Error here?
tags is the 4-th arg, description is the 6-th
https://mlflow.org/docs/latest/python_api/mlflow.client.html#mlflow.client.MlflowClient.create_model_version