Cloud Dataflow to Join multiple files

1.6k Views Asked by At

I am newbie to Google Cloud,I have below files in GCS, need to design a dataflow to merge the files and replace values from product,location files and load the final output file to BigQuery.

  1. gs://testprojectxxxx/staging/actual_file.csv
  2. gs://testprojectxxxx/staging_timestamp/product.csv /location.csv

enter image description here

Python code on local machine:

import pandas as pd

df1 = pd.read_csv("C:/Users/xxxx\\actual_file.csv")
df2 = pd.read_csv("C:/Users/xxxx_folder\\product.csv",header=None,names=['id', 'product_name'])
df3 = pd.merge(df1, df2, how='left', left_on='product_id', right_on='id')
df3.drop(['product_id_x', 'id'], axis=1,inplace=True)

df4 = pd.read_csv("C:/Users/xxxx_folder\\location.csv",header=None,names=['id', 'location_name'])
df5 = pd.merge(df3, df4, how='left', left_on='location_id', right_on='id')
df5.drop(['location_id_x', 'id'], axis=1,inplace=True)

df5.rename(columns={'product_name_y':'product_name','location_name_y':'location'}, inplace=True)
df5.to_csv('Final_file.csv', sep=',',encoding='utf-8', index=False)

Appreciate your help.

1

There are 1 best solutions below

2
On

To join these rows you want to use GroupByKey or CoGroupByKey

https://beam.apache.org/releases/pydoc/2.8.0/apache_beam.transforms.core.html#apache_beam.transforms.core.GroupByKey

Check out Section 4.2.3 in the docs https://beam.apache.org/documentation/programming-guide/#core-beam-transforms

emails_list = [
    ('amy', '[email protected]'),
    ('carl', '[email protected]'),
    ('julia', '[email protected]'),
    ('carl', '[email protected]'),
]
phones_list = [
    ('amy', '111-222-3333'),
    ('james', '222-333-4444'),
    ('amy', '333-444-5555'),
    ('carl', '444-555-6666'),
]

emails = p | 'CreateEmails' >> beam.Create(emails_list)
phones = p | 'CreatePhones' >> beam.Create(phones_list)

# The result PCollection contains one key-value element for each key in the
# input PCollections. The key of the pair will be the key from the input and
# the value will be a dictionary with two entries: 'emails' - an iterable of
# all values for the current key in the emails PCollection and 'phones': an
# iterable of all values for the current key in the phones PCollection.
results = ({'emails': emails, 'phones': phones}
           | beam.CoGroupByKey())

def join_info(name_info):
  (name, info) = name_info
  return '%s; %s; %s' %\
      (name, sorted(info['emails']), sorted(info['phones']))

contact_lines = results | beam.Map(join_info)