Given a system of the form y' = A*y(t) with solution y(t) = e^(tA)*y(0), where e^A is the matrix exponential (i.e. sum from n=0 to infinity of A^n/n!), how would I use matlab to compute the solution given the values of matrix A and the initial values for y?
That is, given A = [-2.1, 1.6; -3.1, 2.6], y(0) = [1;2], how would I solve for y(t) = [y1; y2] on t = [0:5] in matlab?
I try to use something like
t = 0:5
[y1; y2] = expm(A.*t).*[1;2]
and I'm finding errors in computing the multiplication due to dimensions not agreeing.
Please note that matrix exponential is defined for square matrices. Your attempt to multiply the attenuation coefs with the time vector doesn't give you what you'd want (which should be a 3D matrix that should be exponentiated slice by slice).
One of the simple ways would be this:
Please note that in MATLAB array are indexed from 1.