I want to compute the number of times fib(n) is called FOR EACH n. I have written the code as below:
#include <stdio.h>
#define N 10
int count[N + 1]; // count[n] keeps track of the number of times each fib(n) is called
int fib(int n) {
count[n]++;
if(n <= 1)
return n;
else
return fib(n - 1) + fib(n - 2);
}
int main() {
for(int i = 0; i <= N; i++) {
count[i] = 0; // initialize count to 0
}
fib(N);
// print values of count[]
for(int i = 0; i <= N; i++) {
printf("count[%d] = %d", i, count[i]);
}
}
I have tried printing the array count[] to get the result, where the result is resembles the fibonacci numbers except for count[0]:
count[0] = 34 count[1] = 55 count[2] = 34 count[3] = 21 count[4] = 13 count[5] = 8 count[6] = 5 count[7] = 3 count[8] = 2 count[9] = 1 count[10] = 1
Is there a way to mathematically show this result, maybe a recursive formula? Also, why doesn't count[0], or rather fib(0), doesn't continue the fibonacci sequence? Thanks.
Because
count[1]
is going to be called for eachcount[2] + count[3]
butcount[0]
is only going to be called forcount[2]
...count[1]
doesn't contribute because it's a terminus.As for mathematical formula: