I have this code to run a langchain sample code.
def load_db(files, chain_type, k):
# load documents
loaders = [PyPDFLoader(file) for file in files]
documents = []
for loader in loaders:
documents.extend(loader.load())
# split documents
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
docs = text_splitter.split_documents(documents)
# define embedding
embeddings = GPT4AllEmbeddings()
# create vector database from data
db = DocArrayInMemorySearch.from_documents(docs, embeddings)
# define retriever
retriever = db.as_retriever(search_type="mmr", search_kwargs={"k": k})
llm = GPT4All(model="C:/Users/shang/Downloads/mistral-7b-openorca.Q4_0.gguf",
callbacks=[StreamingStdOutCallbackHandler()],
verbose=True)
# create a chatbot chain. Memory is managed externally.
qa = ConversationalRetrievalChain.from_llm(
llm=llm,
chain_type=chain_type,
retriever=retriever,
return_source_documents=True,
return_generated_question=True,
)
return qa
It runs into error at the embedding step
embeddings = GPT4AllEmbeddings()
Error: requests.exceptions.ConnectionError: ('Connection aborted.', ConnectionResetError(10054, 'An existing connection was forcibly closed by the remote host', None, 10054, None))
Anything I missed here?