I have the following R code that I wanted to change into Python but have ran into a slip. When running the code it seems when a cancel buy order or sell order is made it uses one of the number of buy orders available or number of sell orders available (nb,ns) so when the code runs it runs out of orders after many generation of events. So it seems the generation function I have tried to implement is not generating enough orders. So the orderbook is decreasing faster then increasing. That is why my code gets a keyerror because it ends up at posns not found in my book for canceling buy orders or sell orders. Below is the R code and then the Python code.

R code.

#Book setup
L <- 30 #Set number of price levels to be included in iterations

# Generate initial book
LL <- 1000 #Total number of levels in buy and sell books

# Initialize book with asymptotic depth of 5 shares
initializeBook5 <- function()
{
  Price <<- -LL:LL    
  # Book shape is set to equal long-term average from simulation
  buySize <<- c(rep(5,LL-8),5,4,4,3,3,2,2,1,rep(0,LL+1))
  sellSize <<- c(rep(0,LL),0,1,2,2,3,3,4,4,5,rep(5,LL-8))
  book <<- data.frame(Price, buySize, sellSize ) 
  if(logging==T){eventLog <<- as.data.frame(matrix(0,nrow=numEvents,ncol=2))
  colnames(eventLog)<<-c("Type","Price")
  count <<- 0
  eventType <<- c("LB","LS","CB","CS","MB","MS")
  eventDescr <<- NA}
}


#Various utility functions
bestOffer <- function(){min(book$Price[book$sellSize>0])}
bestBid <- function(){max(book$Price[book$buySize>0])}
spread <- function(){bestOffer()-bestBid()}
mid <- function(){(bestOffer()+bestBid())/2}

#Functions to find mid-market
bidPosn<-function()length(book$buySize[book$Price<=bestBid()])
askPosn<-function()length(book$sellSize[book$Price<=bestOffer()])
midPosn<-function(){floor((bidPosn()+askPosn())/2)}

#Display center of book
go <- function(){book[(midPosn()-20):(midPosn()+20),]}

#Display book shape
bookShape<-function(band){c(book$buySize[midPosn()+(-band:0)],book$sellSize[midPosn()+1:band])}
bookPlot<-function(band){
  plot((-band:band),bookShape(band),
       col="red",type="l",xlab="Price",ylab="Quantity")
}

#Choose from L whole numbers in (1,...,L) with uniform probability
pick <- function(m){sample(1:m,1)}

# Switch logging on
logging <- T

#Buy limit order
limitBuyOrder <- function(price=NA){
  if (is.na(price))
  {prx <<- (bestOffer()-pick(L))}
  else prx <<-price  
  if(logging==T){eventLog[count,]<<- c("LB",prx)} 
  book$buySize[book$Price==prx]<<-book$buySize[book$Price==prx]+1} 

#Sell limit order
limitSellOrder <- function(price=NA){
  if (is.na(price))
  {prx <<- (bestBid()+pick(L))}
  else prx <<-price  
  if(logging==T){eventLog[count,] <<- c("LS",prx)}  
  book$sellSize[book$Price==prx]<<-book$sellSize[book$Price==prx]+1} 

#Cancel buy order            
cancelBuyOrder<-function(price=NA){
  q<-pick(nb) 
  tmp <- cumsum(rev(book$buySize))  #Cumulative buy size from 0
  posn <- length(tmp[tmp>=q]) #gives position in list where cumulative size >q
  prx <<- book$Price[posn] 
  if (!is.na(price)) {prx <<-price} 
  if(logging==T){eventLog[count,]<<- c("CB",prx)} 
  book$buySize[posn]<<-book$buySize[posn]-1}


#Cancel sell order
cancelSellOrder<-function(price=NA){
  q<-pick(ns) 
  tmp <- cumsum(book$sellSize)  #Cumulative sell size from 0
  posn <- length(tmp[tmp<q])+1 
  prx <<- book$Price[posn] 
  if (!is.na(price)) {prx <<-price}  
  if(logging==T){eventLog[count,]<<- c("CS",prx)} 
  book$sellSize[posn]<<-book$sellSize[posn]-1}

#Market buy order
marketBuyOrder <- function(){
  prx <<- bestOffer() 
  if(logging==T){eventLog[count,]<<- c("MB",prx)} 
  book$sellSize[book$Price==prx]<<-book$sellSize[book$Price==prx]-1}

#Market sell order
marketSellOrder <- function(){
  prx <<- bestBid() 
  if(logging==T){eventLog[count,]<<- c("MS",prx)} 
  book$buySize[book$Price==prx]<<-book$buySize[book$Price==prx]-1}


#Generate an event and update the buy and sell books
#Note that limit orders may be placed inside the spread
generateEvent <- function()
{
  nb <<- sum(book$buySize[book$Price>=(bestOffer()-L)]); # Number of cancelable buy orders
  ns <<- sum(book$sellSize[book$Price<=(bestBid()+L)]); # Number of cancelable sell orders
  eventRate <- nb*delta+ns*delta + mu +2*L*alpha;
  probEvent <- c(L*alpha,L*alpha,nb*delta,ns*delta,mu/2,mu/2)/eventRate;
  m <- sample(1:6, 1, replace = TRUE, probEvent); #Choose event type
  switch(m,
         limitBuyOrder(),
         limitSellOrder(),
         cancelBuyOrder(),
         cancelSellOrder(),
         marketBuyOrder(),
         marketSellOrder()
  );
  
}


logging <- F 

lambda <- 1
mus <- c(10,8,10,10)
nus <- c(1/5,1/5,1/6,1/8)
avgBookShapes<-as.data.frame(matrix(0,nrow=41,ncol=4))

for(i in 1:4){
    mu<-mus[i]
    nu<-nus[i]
    initializeBook5()

    numEvents <- 100000 # Average over 100,000 events
    avgBookShape <- bookShape(20)/numEvents
    for(count in 2:numEvents){
      generateEvent()
      avgBookShape <- avgBookShape+bookShape(20)/numEvents
    }

    avgBookShapes[,i]<-avgBookShape
}

Python code

import numpy as np 
import matplotlib.pyplot as plt
import pandas as pd 
import random 
import math

class Zibook():
    def __init__(self,ll,l,alpha,mu,delta,num_events,logging=False):
        self.ll = ll #total number of levels in buy and sell
        self.l = l # set number of price levels to be included in iterations 
        self.alpha = alpha
        self.mu = mu 
        self.delta = delta
        self.num_events = num_events
        self.logging = logging
        price = np.array(list(range(-self.ll,self.ll +1,1)))
        buy_size = np.array([5]*(self.ll-8) + [5,4,4,3,3,2,2,1] + [0]*(self.ll+1))
        sell_size = np.array([0]*(self.ll) + [0,1,2,2,3,3,4,4,5] +[5]*(self.ll-8))
        book = pd.DataFrame(index=price,columns=['Price','Buy Size','Sell Size','Type'])
        book['Price'] = price
        book['Buy Size'] = buy_size
        book['Sell Size'] = sell_size
        book = book.reset_index(drop=True)
        self.book = book
        event_type = ['LB','LS','CB','CS','MB','MS']
        event_descr = np.nan
        x = list(range(0,self.num_events,1)) 
        event_log = pd.DataFrame(index=x,columns=['Type','Price'])
        self.event_log = event_log 
        nb = sum(self.book.loc[self.book.Price >= (self.best_offer()-self.l), 'Buy Size']) #number of cancellable  buy orders
        ns = sum(self.book.loc[self.book.Price <= (self.best_bid()+self.l), 'Sell Size']) #number of cancellable sell order
        self.nb = nb
        self.ns = ns

    def best_offer(self):
        df = self.book
        a = df.loc[df['Sell Size'] > 0,'Price'].min()
        return a

    def best_bid(self):
        df = self.book
        b =   df.loc[df['Buy Size']>0 ,'Price'].max()
        return b
    def spread(self):
        spread = (self.best_offer() - self.best_bid())/2
        return spread 

    def mid(self):
        mid = (self.best_offer() + self.best_bid())/2
        return mid 

    def bidposn(self):
        df = self.book
        a = len(df.loc[df.Price <= self.best_bid(),'Buy Size'])-1
        return a

    def askposn(self):
        df = self.book
        a = len(df[df['Price'] <= self.best_offer()]['Sell Size']) -1
        return a
    def midposn(self):
        df = self.book
        a = ((self.bidposn()+self.askposn())//2)
        return a
    
    def centerbook(self):
        df = self.book
        mid = self.midposn()
        return df[mid-20:mid +21]

    def bookshape(self,band):
        df = self.book
        mid = self.midposn()
        x = np.arange(-band,0)
        y = [df.loc[(mid+el),'Buy Size'] for el in x]
        x1 = np.arange(0,band+1 )
        z = [df.loc[(mid + el), 'Sell Size'] for el in x1]
        seq3 = np.concatenate((y,z),axis=0)
        return seq3

        
    def bookplot(self,band):
        x = list(range(-band,band+1,1))
        seq3 = self.bookshape(band)
        plt.plot(x,seq3, color='red')
        plt.xlabel('Price')
        plt.ylabel('Quantity')
        return plt.show()

    def pick(self,l):
        a= np.random.choice(l,1,replace=True,p=[1/l]*l)
        return a[0]

    def limitbuyorder(self,price=None):
        
        if price == None :
            price = (self.best_offer() - self.pick(self.l))
        else:
            price = price 
        df = self.book
        if self.logging == True:
            count = 0
            eventlog = self.event_log
            eventlog.loc[count,'Price'] = price
            eventlog.loc[count,'Type'] = 'LB'
        df.loc[df.Price==price,'Buy Size'] += 1
    def limitsellorder(self,price=None):
         
        if price == None :
            price = (self.best_bid() + self.pick(self.l))
        else:
            price = price 
        df = self.book
        if self.logging == True:
            count = 0
            eventlog = self.event_log
            eventlog.loc[count,'Price'] = price
            eventlog.loc[count,'Type'] = 'LS'
        df.loc[df.Price==price,'Sell Size'] += 1

    def cancelbuyorder(self,price=None):
        df = self.book
        if price == None:
            q = self.pick(self.nb)
            tmp = np.array(df['Buy Size'].to_list()[::-1]).cumsum()
            posn = len(tmp[tmp>=q]) - 1
        
            price = df.Price[posn]
            df.loc[posn,'Buy Size'] -= 1
        else:
            price = price 
            df.loc[df.Price==price,'Buy Size'] -= 1

        if self.logging == True:
            count = 0
            eventlog = self.event_log
            eventlog.loc[count,'Price'] = price
            eventlog.loc[count,'Type'] = 'CB'
        


    def cancelsellorder(self,price=None):
        #global ns
        df = self.book
        if price == None:
            q = self.pick(self.ns)
            tmp = np.array(df['Sell Size'].to_list()).cumsum()
            posn = len(tmp[tmp<q])
            price = df.Price[posn]
            df.loc[posn,'Sell Size'] -= 1
        else:
            price = price 
            df.loc[df.Price==price,'Sell Size'] -= 1
        if self.logging == True:
            count = 0
            eventlog = self.event_log
            eventlog.loc[count,'Price'] = price
            eventlog.loc[count,'Type'] = 'CS'
     

    def marketbuyorder(self,price=None):
        df = self.book
        price = self.best_offer()
        if self.logging == True:
            count = 0
            eventlog = self.event_log
            eventlog.loc[count,'Price'] = price
            eventlog.loc[count,'Type'] = 'MB'
        
        df.loc[df.Price==price,'Sell Size'] -= 1
     

    def marketsellorder(self,price=None):
        df = self.book
        price = self.best_bid()
        if self.logging == True:
            count = 0
            eventlog = self.event_log
            eventlog.loc[count,'Price'] = price
            eventlog.loc[count,'Type'] = 'MS'
        
        df.loc[df.Price==price,'Buy Size'] -= 1


    def generateevent(self):
        df = self.book
        nb = sum(df.loc[df.Price >= (self.best_offer()-self.l), 'Buy Size']) #number of cancellable  buy orders
        ns = sum(df.loc[df.Price <= (self.best_bid()+self.l), 'Sell Size']) #number of cancellable sell order
        eventRate = nb*self.delta +ns*self.delta + self.mu + 2*self.l*self.alpha 
        probEvent = (self.l*self.alpha + self.l*self.alpha + nb*self.delta + ns*self.delta + self.mu*0.5 + self.mu*0.5)/eventRate
        a = np.random.choice(6,1,replace=True,p=[probEvent/6]*6)
        idx = a[0]
        z= [self.limitbuyorder(),self.limitsellorder(),self.cancelbuyorder(),self.cancelsellorder(),self.marketbuyorder(),self.marketsellorder()]
        return z[idx]
    
   

alpha = 1
mu = 10
delta = 1/5
num_events = 100000

'''
a = Zibook(1000,30,alpha,mu,delta,num_events,logging=False)


a.limitbuyorder(price =a.best_bid())
a.limitbuyorder(price =a.best_bid())
a.bookplot(20)

#print(a.generateevent())
#print(a.cancelbuyorder(price=None))
'''
lalpha = [1,1,1,1]
lmu = [10,8,10,10]
ldelta = [1/5,1/5,1/6,1/8]
length = len(lalpha)

Avgbookshapes = np.array([])
num_events = 100000

for i in range(0,length,1):
    alpha = lalpha[i]
    mu = lmu[i]
    delta=ldelta[i]
    a = Zibook(1000,30,alpha,mu,delta,num_events,logging=False)
    for i1 in range(0,100,1):
        a.generateevent()
        #print(i1)

    avgbookshape = a.bookshape(20)/num_events
    #print(avgbookshape.shape)

    for i3 in range(2,num_events+1,1):
        a.generateevent()
        #print(i3)
        avgbookshape2 = a.bookshape(20)/num_events
        #print(avgbookshape2.shape)
        avgbookshape += avgbookshape2

    Avgbookshapes = np.append(Avgbookshapes,avgbookshape)

np.save('my_array',Avgbookshapes)

Any help will be greatly appreciated (background on this algo is its a zero intelligence simulation of micromarketstructures https://github.com/zecophy/MTH9879-Market-Microstructure-Models/blob/master/HW1/9879HW1_Chenyu_Zhao_graded.ipynb )

1

There are 1 best solutions below

0
On

just realized i didnt have the probabilities written out correctly in the generateevent function . But the code still decays to 0 orders below is the modified code in python anyone know why the orders decay instead of grow like in the R code? :

def generateevent(self):
        df = self.book
        nb = sum(df.loc[df.Price >= (self.best_offer()-self.l), 'Buy Size'])
        ns = sum(df.loc[df.Price <= (self.best_bid()+self.l), 'Sell Size']) #number of cancellable sell order
        eventRate = nb*self.delta +ns*self.delta + self.mu + 2*self.l*self.alpha 
        probEvent = np.array([self.l*self.alpha, self.l*self.alpha , nb*self.delta, ns*self.delta,self.mu*0.5,self.mu*0.5])/eventRate
        #print(probEvent)
        a = np.random.choice(6,1,replace=True,p=probEvent)
        idx = a[0]
        z= [self.limitbuyorder(),self.limitsellorder(),self.cancelbuyorder(),self.cancelsellorder(),self.marketbuyorder(),self.marketsellorder()]
        return z[idx]