For a project that I am currently working on, I need to optimize a convex problem. As can be read only there are different optimization tools in python in order to obtain the solution of a convex problem (e.g. scipy, CVXPY). However, by implementing these minimization algorithms I keep obtaining that success = 'False'.
To clearify: \beta = (\beta_0,\beta_1)
is the optimization variable and \beta_k = (\beta_{k0},\beta{k1})
are just constants.
My code would look as follows:
import pandas as pd
import numpy as np
import math
from scipy import optimize
import matplotlib.pyplot as plt
from scipy.optimize import fmin
from scipy.optimize import Bounds
t = np.array([1,2,4,6,9,13])
y = np.array([3,4,6,10,17,25])
beta_k = [4.0,0.0]
def h_0():
test_h_0 = 0
for i in range(len(y)):
partial = 2*y[i]*beta_k[0]*np.exp(beta_k[1]*t[i]) + 20*t[i]*np.exp(4*t[i])*(beta_k[0]**2)
test_h_0 += partial
return test_h_0
def partial_h_0_1(beta):
test_h_0_1 = 0
for i in range(len(y)):
partial = (2*y[i]*np.exp(beta_k[1]*t[i]) + 40*t[i]*beta_k[0]*np.exp(4*t[i]))*(beta[0]-beta_k[0])
test_h_0_1 += partial
return test_h_0_1
def partial_h_0_2(beta):
test_h_0_2 = 0
for i in range(len(y)):
partial = (2*t[i]*y[i]*beta_k[0]*np.exp(beta_k[1]*t[i]))*(beta[1]-beta_k[1])
test_h_0_2 += partial
return test_h_0_2
def h_0_hat(beta):
return h_0() + partial_h_0_1(beta) + partial_h_0_2(beta)
def g_0(beta):
test_g_0 = 0
for i in range(len(y)):
partial = (beta[0]**2)*np.exp(2*beta[1]*t[i]) + 20*t[i]*np.exp(4*t[i])*(beta[0]**2) + (y[i]**2)
test_g_0 += partial
return test_g_0
def f_0(beta):
return g_0(beta) - h_0_hat(beta)
bnds = Bounds([1,-np.inf],[10,2])
cons = ({'type': 'ineq',
'fun': lambda beta: -beta[0] + 10.0},
{'type': 'ineq',
'fun': lambda beta: beta[0] - 1.0},
{'type': 'ineq',
'fun': lambda beta: -beta[1]+2.0})
test = optimize.minimize(f_0, x0=[0.0,0.0], method='trust-constr', constraints= cons)
beta = test.x