Convolution - Deconvolution for even and odd size

882 Views Asked by At

I have two different size tensors to put in the network.

C = nn.Conv1d(1, 1, kernel_size=1, stride=2)
TC = nn.ConvTranspose1d(1, 1, kernel_size=1, stride=2)

a = torch.rand(1, 1, 100)
b = torch.rand(1, 1, 101)

a_out, b_out = TC(C(a)), TC(C(b))

The results are

a_out = torch.size([1, 1, 99]) # What I want is [1, 1, 100]
b_out = torch.size([1, 1, 101])

Is there any method to handle this problem?
I need your help.
Thanks

1

There are 1 best solutions below

0
On BEST ANSWER

It is expected behaviour as per documentation. May be padding can be used when even input length is detected to get same length as input.

Something like this

class PadEven(nn.Module):
    def __init__(self, conv, deconv, pad_value=0, padding=(0, 1)):
        super().__init__()
        self.conv = conv
        self.deconv = deconv
        self.pad = nn.ConstantPad1d(padding=padding, value=pad_value)

    def forward(self, x):
        nd = x.size(-1)
        x = self.deconv(self.conv(x))
        if nd % 2 == 0:
            x = self.pad(x)
        return x


C = nn.Conv1d(1, 1, kernel_size=1, stride=2)
TC = nn.ConvTranspose1d(1, 1, kernel_size=1, stride=2)
P = PadEven(C, TC)

a = torch.rand(1, 1, 100)
b = torch.rand(1, 1, 101)

a_out, b_out = P(a), P(b)