I am trying to do a k-fold cross validation on a model that predicts the joint distribution of the proportion of tree species basal area from satellite imagery. This requires the use of the DiricihletReg::DirichReg()
function, which in turn requires that the response variables be prepared as a matrix using the DirichletReg::DR_data()
function. I originally tried to accomplish this in the caret::
package, but I found out that caret::
does not support multivariate responses. I have since tried to implement this in the tidymodels::
suite of packages. Following the documentation on how to register a new model in the parsnip::
(I appreciate Max Kuhn's vegetable humor) package, I created a "DREG" model and a "DR" engine. My registered model works when I simply call it on a single training dataset, but my goal is to do kfolds cross-validation, implementing the vfolds_cv()
, a workflow()
, and the 'fit_resample()' function. With the code I currently have I get warning message stating:
Warning message:
All models failed. See the `.notes` column.
Those notes state that Error in get(resp_char, environment(oformula)): object 'cbind(PSME, TSHE, ALRU2)' not found
This, I believe is due to the use of DR_data()
to preprocess the response variables into the format necessary for Dirichlet::DirichReg()
to run properly. I think the solution I need to implement involve getting this pre-processing to happen in either the recipe()
call or in the set_fit()
call when I register this model with parsnip::
. I have tried to use the step_mutate()
function when specifying the recipe, but that performs a function on each column as opposed to applying the function with the columns as inputs. This leads to the following error in the "notes" from the output of fit_resample()
:
Must subset columns with a valid subscript vector.
Subscript has the wrong type `quosures`.
It must be numeric or character.
Is there a way to get the recipe to either transform several columns to a DirichletRegData
class using the DR_data()
function with a step_*()
function or using the pre=
argument in set_fit()
and set_pred()
?
Below is my reproducible example:
##Loading Necessary Packages##
library(tidymodels)
library(DirichletReg)
##Creating Fake Data##
set.seed(88)#For reproducibility
#Response variables#
PSME_BA<-rnorm(100,50, 15)
TSHE_BA<-rnorm(100,40,12)
ALRU2_BA<-rnorm(100,20,0.5)
Total_BA<-PSME_BA+TSHE_BA+ALRU2_BA
#Predictor variables#
B1<-runif(100, 0, 2000)
B2<-runif(100, 0, 1800)
B3<-runif(100, 0, 3000)
#Dataset for modeling#
DF<-data.frame(PSME=PSME_BA/Total_BA, TSHE=TSHE_BA/Total_BA, ALRU2=ALRU2_BA/Total_BA,
B1=B1, B2=B2, B3=B3)
##Modeling the data using Dirichlet regression with repeated k-folds cross validation##
#Registering the model to parsnip::#
set_new_model("DREG")
set_model_mode(model="DREG", mode="regression")
set_model_engine("DREG", mode="regression", eng="DR")
set_dependency("DREG", eng="DR", pkg="DirichletReg")
set_model_arg(
model = "DREG",
eng = "DR",
parsnip = "param",
original = "model",
func = list(pkg = "DirichletReg", fun = "DirichReg"),
has_submodel = FALSE
)
DREG <-
function(mode = "regression", param = NULL) {
# Check for correct mode
if (mode != "regression") {
rlang::abort("`mode` should be 'regression'")
}
# Capture the arguments in quosures
args <- list(sub_classes = rlang::enquo(param))
# Save some empty slots for future parts of the specification
new_model_spec(
"DREG",
args=args,
eng_args = NULL,
mode = mode,
method = NULL,
engine = NULL
)
}
set_fit(
model = "DREG",
eng = "DR",
mode = "regression",
value = list(
interface = "formula",
protect = NULL,
func = c(pkg = "DirichletReg", fun = "DirichReg"),
defaults = list()
)
)
set_encoding(
model = "DREG",
eng = "DR",
mode = "regression",
options = list(
predictor_indicators = "none",
compute_intercept = TRUE,
remove_intercept = TRUE,
allow_sparse_x = FALSE
)
)
set_pred(
model = "DREG",
eng = "DR",
mode = "regression",
type = "numeric",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict.DirichletRegModel"),
args =
list(
object = expr(object$fit),
newdata = expr(new_data),
type = "response"
)
)
)
##Running the Model##
DF$Y<-DR_data(DF[,c(1:3)]) #Preparing the response variables
dreg_spec<-DREG(param="alternative") %>%
set_engine("DR")
dreg_mod<-dreg_spec %>%
fit(Y~B1+B2+B3, data = DF)#Model works when simply run on single dataset
##Attempting Crossvalidation##
#First attempt - simply call Y as the response variable in the recipe#
kfolds<-vfold_cv(DF, v=10, repeats = 2)
rcp<-recipe(Y~B1+B2+B3, data=DF)
dreg_fit<- workflow() %>%
add_model(dreg_spec) %>%
add_recipe(rcp)
dreg_rsmpl<-dreg_fit %>%
fit_resamples(kfolds)#Throws warning about all models failing
#second attempt - use step_mutate_at()#
rcp<-recipe(~B1+B2+B3, data=DF) %>%
step_mutate_at(fn=DR_data, var=vars(PSME, TSHE, ALRU2))
dreg_fit<- workflow() %>%
add_model(dreg_spec) %>%
add_recipe(rcp)
dreg_rsmpl<-dreg_fit %>%
fit_resamples(kfolds)#Throws warning about all models failing
This works, but I'm not sure if it's what you were expecting.
First--getting the data setup for CV and
DR_data()
I don't know of any package that has built what would essentially be a translation for CV and DirichletReg. Therefore, that part is manually done. You might be surprised to find it's not all that complicated.
Using the data you created and the modeling objects you created for
tidymodels
(those prefixed withset_
), I created the CV structure that you were trying to use.For each of the 20 subset data frames identified in
kDf2
, I usedDR_data
to set the data up for the models.Because I'm not all that familiar with
tidymodels
, next conducted the modeling usingDirichReg
. I then did it again withtidymodels
and compared them. (The output is identical.)DirichReg
Models and summaries of the fitstidymodels
and summaries of the fits (the code looks the same, but there are a few differences--the output is the same, though)If you wanted to see the first model?
If you wanted the model with the lowest AIC?