I'm doing this in JavaScript ( SVG or Canvas ) but I'm really just looking for pseudocode for how somebody could accomplish this:
If given a rectangle, how can you fill it with various sized, non-overlapping triangles similar to this picture: https://i.stack.imgur.com/skvvw.jpg
UPDATE
Here is what I came up with for those that are interested. I used D3.js which has a great delaunay function to do this.
var width = 360;
var height = 220;
var vertices = d3.range(100).map(function (d) {
return [Math.random() * width, Math.random() * height];
});
// place coordinates in the corners
[
[0, 0],
[width, 0],
[0, height],
[width, height]
].forEach(function (d) {
vertices.push(d);
});
// add the temporary coordinates that will follow mousemove
vertices.unshift([0, 0]);
var svg = d3.select("#main").append("svg")
.style("width", width + "px")
.style("height", height + "px")
.on("mousemove", function () {
vertices[0] = d3.mouse(this);
draw();
})
.on("click", function () {
vertices.push(d3.mouse(this));
});
var path = svg.append("g").selectAll("path");
draw();
function draw() {
path = path.data(d3.geom.delaunay(vertices).map(function (d) {
return "M" + d.join("L") + "Z";
}), String);
path.exit().remove();
path.enter().append("path").attr("class", function (d, i) {
return "q" + (i % 9) + "-9";
}).attr("d", String);
}
#main {
position: relative;
width: 360px;
height: 220px;
border: 1px solid #ddd;
}
path {
fill: #fff;
stroke: steelblue;
}
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.4.11/d3.min.js"></script>
<div id="main"></div>
I would do the following:
Varying jitter should create a similar pattern as shown in the image. To control the jitter you could randomize an angle and radius rather than just the position. Then convert the result of that to a new position.
An ASCII representation (perhaps not useful..):
Apply jitter
Draw in ordered fashion whatever the point position is:
You could also look into Voronoi diagram but be aware of that you'll end up with quadratic polygons and n-gons, the latter can be a bit of a challenge but check Delaunay triangulation for that.