Struggling for days, I'm seeking help for creating a custom coastline shapefile based on a high-res digital elevation dataset in GeoTIFF format. I'm willing to do so because the default coastline is shifted and not accurate enough for my needs (climatology) ; see example screenshot.
Default coastline vs. DEM mask
The aim behind creating this shapefile is that I can re-use it while plotting climate data over the area.
For now, here's what I got :
import os
import rasterio
import numpy as np
import geopandas as gpd
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
from shapely.geometry import Point
def create_coastline_from_dem(dem_path, coastline_path):
# Read DEM data
with rasterio.open(dem_path) as dem:
dem_data = dem.read(1)
transform = dem.transform
# Create coastline data
coastline_data = np.zeros_like(dem_data, dtype=np.uint8)
# Define a simple threshold to identify coastline
threshold = 0 # Adjust this threshold based on your DEM characteristics
coastline_data[dem_data <= threshold] = 1
# Write coastline data to a new GeoTIFF file
with rasterio.open(coastline_path, 'w', driver='GTiff', height=dem_data.shape[0],
width=dem_data.shape[1], count=1, dtype='uint8', crs=dem.crs,
transform=transform) as dst:
dst.write(coastline_data, 1)
def create_coastline_geojson(coastline_path, output_geojson):
# Read coastline data
with rasterio.open(coastline_path) as coastline:
transform = coastline.transform
# Identify coastline pixels
coastline_pixels = np.where(coastline.read(1) == 1)
# Convert pixel coordinates to geographic coordinates
lon, lat = rasterio.transform.xy(transform, coastline_pixels[0], coastline_pixels[1])
# Create a GeoDataFrame with the coastline as points
gdf = gpd.GeoDataFrame({'geometry': [Point(x, y) for x, y in zip(lon, lat)]}, crs=coastline.crs)
# Save the GeoDataFrame to a GeoJSON file
gdf.to_file(output_geojson, driver='GeoJSON')
def plot_coastline_geojson(geojson_path):
# Read GeoDataFrame from GeoJSON
gdf = gpd.read_file(geojson_path)
# Calculate the central longitude and latitude
central_lon = (gdf.bounds.minx + gdf.bounds.maxx) / 2
central_lat = (gdf.bounds.miny + gdf.bounds.maxy) / 2
# Create a plot with equal aspect ratio
fig, ax = plt.subplots(subplot_kw={'projection': ccrs.PlateCarree(central_longitude=central_lon)})
ax.set_aspect('equal', adjustable='datalim')
# Plot coastline
gdf.plot(ax=ax, markersize=0.1, color='black')
# Add gridlines
ax.gridlines(draw_labels=True)
# Add coastlines
ax.coastlines(resolution='10m')
plt.show()
if __name__ == "__main__":
# Get the path to the current directory
current_directory = os.path.dirname(os.path.abspath(__file__))
# Build the paths to the DEM and coastline files
dem_file = os.path.join(current_directory, "tahi.tiff")
coastline_file = os.path.join(current_directory, "coastline.tif")
coastline_geojson = os.path.join(current_directory, "coastline.geojson")
create_coastline_from_dem(dem_file, coastline_file)
create_coastline_geojson(coastline_file, coastline_geojson)
plot_coastline_geojson(coastline_geojson)
Edit ; that may be helpful :
gdalinfo tahi.tiff
Driver: GTiff/GeoTIFF
Files: tahi.tiff
Size is 625, 601
Origin = (-150.261250000000217,-16.798750000000002)
Pixel Size = (0.002500000000000,-0.002500000000000)
Image Structure Metadata:
COMPRESSION=DEFLATE
INTERLEAVE=BAND
Corner Coordinates:
Upper Left (-150.2612500, -16.7987500)
Lower Left (-150.2612500, -18.3012500)
Upper Right (-148.6987500, -16.7987500)
Lower Right (-148.6987500, -18.3012500)
Center (-149.4800000, -17.5500000)
Band 1 Block=625x3 Type=Float32, ColorInterp=Gray
Min=0.000 Max=1980.548
Minimum=0.000, Maximum=1980.548, Mean=17.268, StdDev=106.653
NoData Value=nan
Metadata:
STATISTICS_MAXIMUM=1980.5482177734
STATISTICS_MEAN=17.268496548744
STATISTICS_MINIMUM=0
STATISTICS_STDDEV=106.65328874517
STATISTICS_VALID_PERCENT=100
2023/12/04 EDIT :
I did some more work and came closer, but am still facing some issues. For now, my script looks like :
import numpy as np
import matplotlib.pyplot as plt
from osgeo import gdal
import fiona
from shapely.geometry import Polygon, mapping
from shapely.ops import unary_union
from cartopy import crs as ccrs
from cartopy.feature import ShapelyFeature
from cartopy.io import shapereader
def read_geotiff(file_path):
dataset = gdal.Open(file_path)
if dataset is None:
raise Exception("Error opening dataset!")
band = dataset.GetRasterBand(1)
data = band.ReadAsArray()
geotransform = dataset.GetGeoTransform()
return data, geotransform
def create_coastline_shapefile(data, geotransform, output_shapefile):
contours = plt.contour(geotransform[0] + geotransform[1] * np.arange(data.shape[1]),
geotransform[3] + geotransform[5] * np.arange(data.shape[0]),
data, levels=[0])
# Extract polygons from the contours
polygons = [Polygon(line.vertices) for line in contours.collections[0].get_paths()]
# Merge adjacent polygons
merged_polygon = unary_union(polygons)
# Write the merged polygon to a shapefile
schema = {
'geometry': 'Polygon',
'properties': {'id': 'int'},
}
with fiona.open(output_shapefile, 'w', 'ESRI Shapefile', schema) as output:
output.write({
'geometry': mapping(merged_polygon),
'properties': {'id': 1},
})
def plot_custom_coastline(ax, shapefile):
shp_feature = ShapelyFeature(shapereader.Reader(shapefile).geometries(),
ccrs.PlateCarree(), edgecolor='black', facecolor='none')
ax.add_feature(shp_feature, zorder=2)
def plot_default_coastline(ax):
ax.coastlines(resolution='10m', color='black', linewidth=1, zorder=1)
def plot_comparison(data, geotransform, custom_shapefile):
fig, ax = plt.subplots(subplot_kw={'projection': ccrs.PlateCarree()})
ax.set_extent([geotransform[0], geotransform[0] + geotransform[1] * data.shape[1],
geotransform[3] + geotransform[5] * data.shape[0], geotransform[3]], crs=ccrs.PlateCarree())
# Plot the default coastline
plot_default_coastline(ax)
# Plot the custom coastline
plot_custom_coastline(ax, custom_shapefile)
plt.show()
if __name__ == "__main__":
tiff_file = "tahi.tiff"
output_shapefile = "coastline_shapefile.shp"
data, geotransform = read_geotiff(tiff_file)
create_coastline_shapefile(data, geotransform, output_shapefile)
plot_comparison(data, geotransform, output_shapefile)
This gets me these figures. Figure 1 looks pretty close to the shapefile I need. But when I plot the custom shapefile created, it shows some unwanted lines between lone pixels. Figure 1 and 2 screenshot