I have a df like this:
structure(list(Date = structure(c(18605, 18604, 18598, 18597,
18590, 18584, 18583, 18578, 18570, 18569, 18563, 18562, 18557,
18549, 18548, 18542, 18541, 18536, 18534, 18529, 18521, 18520,
18515, 18508, 18500, 18499, 18493, 18492, 18486, 18485, 18479,
18478, 18472, 18471, 18465, 18464, 18458, 18457, 18450, 18445,
18444, 18437, 18436, 18430, 18429, 18424, 18416, 18415, 18410,
18409, 18403, 18402, 18396, 18388, 18387, 18381, 18380, 18374,
18373, 18368, 18367, 18360, 18359, 18354, 18340, 18338, 18331,
18325, 18317, 18312, 18289, 18282, 18275, 18268), class = "Date"),
`Type 1` = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, 0.3, NA, NA, NA, NA, 0.4, NA, NA,
NA, NA, 0.2, NA, NA, NA, NA, 0.7, NA, NA, NA, NA, NA, 0.5,
NA, NA, NA, NA, 0.3, NA, NA, NA, NA, NA, 0.4, NA, NA, NA,
0.3, NA, NA, NA, NA, NA, NA, NA, NA, 0.6, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA), `Type 2` = c(NA, NA, 0.1, NA,
NA, 0.1, NA, 0.2, NA, 0.2, 0.1, NA, 0.2, 0.2, NA, 0.1, NA,
NA, 0.1, NA, 0.2, NA, NA, 0.4, 0.2, NA, 0.3, NA, 0.2, NA,
0.3, NA, 0.6, NA, 0.4, NA, NA, 0.2, NA, 0.4, 0.6, NA, 0.3,
NA, 0.2, 0.7, NA, 0.1, 0.3, NA, 0.2, NA, NA, NA, 0.3, NA,
0.1, 0.3, NA, NA, 0.3, 0.2, NA, NA, NA, NA, 0.6, NA, 0.4,
NA, 0.2, NA, NA, 0.2), `Type 3` = c(NA, 0.3, NA, 0.3, 0.4,
NA, 0.2, NA, 0.3, NA, NA, 0.2, NA, NA, 0.2, NA, 0.2, NA,
NA, 0.1, NA, 0.2, NA, NA, NA, 0.3, NA, NA, NA, 0.4, NA, 0.3,
NA, 0.7, NA, 0.2, 0.5, 0.4, NA, 0.4, NA, 0.8, 0.4, NA, 0.2,
0.6, 0.3, 0.2, NA, NA, NA, 0.4, 0.4, NA, 0.2, 0.3, NA, 0.2,
0.3, 0.4, NA, 0.7, NA, NA, 1.4, NA, NA, 1.4, NA, 1, NA, NA,
0.3, NA), `Type 4` = c(NA, 0.4, NA, 0.1, 0.1, NA, 0.1, NA,
NA, 0.1, NA, 0.1, 0.2, NA, 0.2, NA, 0.2, 0.3, NA, NA, NA,
0.2, 0.3, 0.3, NA, NA, NA, 0.5, NA, 0.6, NA, 0.7, NA, NA,
NA, 1.2, 1, NA, 0.3, NA, 1.1, NA, NA, 0.4, NA, NA, NA, NA,
0.2, 0.2, NA, NA, 0.2, NA, NA, 0.1, NA, NA, NA, 0.2, 0.3,
NA, 0.2, 0.3, NA, 1.8, NA, NA, NA, NA, NA, 0.2, NA, NA)), row.names = c(NA,
-74L), class = c("tbl_df", "tbl", "data.frame"))
I'd like to be able to work out the deviation from the 'Type' average, and display it instead of the original data. So for example, the df currently shows 0.3 on 2020-10-01 for 'Type 1'. Instead of that, I would like it to show the deviation from the 'Type 1' average from across the dataset.
Is this possible?