I have model in pymc2 like this.
p = Uniform(name='p', lower=p_lowers, upper=p_uppers, value=p_values)
MIM_Model = pm.Deterministic(eval = MIM_eval,
name = 'NEE_Model',
parents = {'p': p, 'Csom_0': Csom_0,
'Tave': Tave, 'Tmax': Tmax, 'Rg': Rg, 'RH': RH, 'VPD':VPD,'Lat':Lat,'a2': a2},
doc = 'model construction',
trace = True,
verbose = 0,
dtype = float,
plot = False,
cache_depth = 2)
All of the variables (Rg': Rg, 'RH': RH, 'VPD':VPD,'Lat':Lat) are arrays.
def MIM_eval(p, Csom_0, Tave, Tmax, Rg, RH, VPD, Lat, a2):
p1 = p[0]#*1.e5
p2 = p[1]#*1.e5
p3 = p[2]#*1.e5
p4 = p[3]#*1.e5
p5 = p[4]#*1.e5
....
Lf[0][i] = p6*Cf_0
Ln[0][i] = p8*Cn_0
Lr[0][i] = p7*Cr_0
....
_results = []
for j in range(obs_size):
tmp_result = []
for k in idx[j]:
tmp_result.append(round(all_results[j][0][k], 8))
_results.append(tmp_result)
# Return the model result.
return _results
And this runs well in pymc2, but i can't use it in pymc3, cause params in Deterministic must be theano variable, i searched a lot of examples but no one fits this situation(cause too many params);
- Example online, the theanovar is too simple...
Normal('v3', mu=mean, sigma=half_cauchy)
# Deterministic variables can be used in usual way
Deterministic('v3_sq', self.v3 ** 2)
In my situation, i tried below, but i don't know how to write MIM_eval in pymc3, cause the deterministic's params can't recieve type of array.
MIM_Model = pm.Deterministic('MIM_Model',MIM_eval(p, Cf_0, Cr_0, Cw_0, Clit_0, Csom_0, Nt, Ta))
def MIM_eval(p, Csom_0, Tave, Tmax, Rg, RH, VPD, Lat, a2):
# ???
# can't return results