I have local image data in which each subfolder contains images of a class, loaded the data with load_dataset
.
then i noticed it is very slow in the feature extracting and training process,
so I want to divide the data into 10 parts, each containing N images of every class, and then feed these 10 parts separately to the extractor and trainer.
any suggestions?
btw this is the code: (which is a customized copy of huggingface blog)
DATASET_DIR = '/content/drive/MyDrive'
dataset = load_dataset(name="flowers", path=DATASET_DIR, data_files={"train": "/content/drive/MyDrive/ML learning/flowers2**"})
labels = dataset['train'].features['label'].names
def transform(example_batch):
# Take a list of PIL images and turn them to pixel values
inputs = extractor([x for x in example_batch['image']], return_tensors='pt')
# Don't forget to include the labels!
inputs['labels'] = example_batch['label']
return inputs
prepared_ds = dataset.with_transform(transform)
def collate_fn(batch):
return {
'pixel_values': torch.stack([x['pixel_values'] for x in batch]),
'labels': torch.tensor([x['labels'] for x in batch])
}
extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224")
model = AutoModelForImageClassification.from_pretrained("google/vit-base-patch16-224",num_labels=len(labels),ignore_mismatched_sizes=True,
id2label={str(i): c for i, c in enumerate(labels)},
label2id={c: str(i) for i, c in enumerate(labels)})
model.classifier = torch.nn.Linear(in_features=model.classifier.in_features, out_features=len(labels)
training_args = TrainingArguments(
output_dir="./vit-base-flowers-v1",
per_device_train_batch_size=16,
evaluation_strategy="steps",
num_train_epochs=4,
# fp16=True,
save_steps=100,
eval_steps=100,
logging_steps=10,
learning_rate=2e-4,
remove_unused_columns=False,
push_to_hub=False,
# report_to='tensorboard',
load_best_model_at_end=True,
save_total_limit=2
)
trainer = Trainer(
model=model,
args=training_args,
data_collator=collate_fn,
# compute_metrics=compute_metrics,
train_dataset=prepared_ds["train"],
# eval_dataset=prepared_ds["test"],
tokenizer=extractor,
)
train_results = trainer.train()
the only thing i tried is to split the data folder manually which is not so automatic {and of course searching the whole net :) }