I seek the lowest eigenvalues and eigenvectors for a complex-valued Hermitian matrix. For any real-valued Hermitian matrix, the following code works perfectly:
import numpy as np
import numpy.linalg as la
import copy as cp
#Generates the representation in Krylov subspace of a Hermitian NxN matrix using the Lanczos algorithm and an initial vector guess vg.
def Lanczos(H,vg):
Lv=np.zeros((len(vg),len(vg)), dtype=complex) #Creates matrix for Lanczos vectors
Hk=np.zeros((len(vg),len(vg)), dtype=complex) #Creates matrix for the Hamiltonian in Krylov subspace
Lv[0]=vg/la.norm(vg) #Creates the first Lanczos vector as the normalized guess vector vg
#Performs the first iteration step of the Lanczos algorithm
w=np.dot(H,Lv[0])
a=np.dot(np.conj(w),Lv[0])
w=w-a*Lv[0]
Hk[0,0]=a
#Performs the iterative steps of the Lanczos algorithm
for j in range(1,len(vg)):
b=(np.dot(np.conj(w),np.transpose(w)))**0.5
Lv[j]=w/b
w=np.dot(H,Lv[j])
a=np.dot(np.conj(w),Lv[j])
w=w-a*Lv[j]-b*Lv[j-1]
#Creates tridiagonal matrix Hk using a and b values
Hk[j,j]=a
Hk[j-1,j]=b
Hk[j,j-1]=np.conj(b)
return (Hk,Lv)
But for complex values, the output eigenvectors aren't the same (though the the eigenvalues are the same!):
H = np.random.rand(8,8) + np.random.rand(8,8)*1j #Generates random complex-valued 8x8 matrix
H = H + H.conj().T #Ensures 8x8 matrix is symmetric (hermitian)
Hc = cp.copy(H)
a,b = np.linalg.eig(H) #Directly computes eigenvalues of H
vg = np.random.rand(8) + np.random.rand(8)*1j #Generates random guess vector
Hk,Lv = Lanczos(Hc,vg) #Applies the Lanczos algorithm to H using the guess vector vg
A,B= np.linalg.eig(Hk)
#While the following outputs are the same
a[0]
A[0]
#The following are not!!!
b[:,0]
np.dot(B[:,0],Lv)
Any idea what I am doing wrong? Thank you.
--- Solution ---
Shoutout to Acccumulation for pointing it out, but it appears that there is nothing wrong in this procedure, as the eigenvalue check yields:
a[0]*b[:,0] - np.dot(H,b[:,0])
array([ 3.55271368e-15+1.11022302e-15j, 4.44089210e-16-3.65257395e-16j,
0.00000000e+00+9.99200722e-16j, -4.44089210e-16+3.33066907e-16j,
-2.22044605e-15-1.66533454e-16j, 1.33226763e-15+0.00000000e+00j,
2.66453526e-15+1.22124533e-15j, 3.10862447e-15+1.22124533e-15j])
A[0]*np.dot(B[:,0],Lv) - np.dot(H,)
array([2.22044605e-15+1.77635684e-15j, 2.66453526e-15+1.55431223e-15j,
2.66453526e-15+1.55431223e-15j, 2.66453526e-15+1.77635684e-15j,
3.55271368e-15+2.66453526e-15j, 1.77635684e-15+1.99840144e-15j,
1.33226763e-15+1.77635684e-15j, 8.88178420e-16+1.55431223e-15j])
implying that both b[:,0] and np.dot(B[:,0],Lv) are eigenvectors to the Hermitian matrix H.
It looks like this is the expected behavior. There is a function in numpy specifically for calculating the eigenvals/eigenvectors of complex Hermitian matrices:
numpy.linalg.eigh()
, so we wouldn't expectnumpy.linalg.eig()
to get the correct values for a Complex Hermitian matrix.