This question is inspired by can't use emmeans inside map, and related to Map `joint_tests` to a list after fitting a `gls` model and `group_by` and keep grouping levels as nested data frame's name
I want to wrap several tests into one workflow.
This works, for a glm
model.
library(dplyr)
library(purrr)
library(emmeans)
library(nlme)
diamond_result <- diamonds %>%
group_by(cut) %>%
nest() %>%
ungroup %>%
dplyr::mutate(models=map(data,~glm(price ~ x + y + z + clarity + color,data=.x)),
jt = map(models, ~emmeans::joint_tests(.x, data = .x$data)),
means=map(models,~emmeans::emmeans(.x,"color",data=.x$data)),
p_cont = map(means, ~emmeans::contrast(.x, "pairwise",infer = c(T,T))),
across(models:p_cont, stats::setNames, .$cut))
> diamond_result$jt
$Ideal
model term df1 df2 F.ratio p.value
x 1 Inf 611.626 <.0001
y 1 Inf 2.914 0.0878
z 1 Inf 100.457 <.0001
clarity 7 Inf 800.852 <.0001
color 6 Inf 256.796 <.0001
$Premium
model term df1 df2 F.ratio p.value
x 1 Inf 2074.371 <.0001
But the same syntax doesn't work for a gls
model so I stopped at emmeans()
step. Eventually, I want joint_tests
, emmeans
, and contrast
in the mutate
step.
diamonds_emm2 <- diamonds %>%
group_by(cut) %>%
nest() %>%
ungroup() %>%
dplyr::mutate(models=map(data,~gls(price ~ x + y + z + clarity,
weights = varIdent(form = ~ 1|color),
data =.x)),
means=map(models,~emmeans::emmeans(.x,"clarity",data=.x$data)),
across(models:p_cont, setNames, .$cut))
Error: Problem with `mutate()` input `means`.
x undefined columns selected
ℹ Input `means` is `map(models, ~emmeans::emmeans(.x, "clarity", data = .x$data))`.
Run `rlang::last_error()` to see where the error occurred.
<error/dplyr:::mutate_error>
Problem with `mutate()` input `means`.
x undefined columns selected
ℹ Input `means` is `map(models, ~emmeans::emmeans(.x, "clarity", data = .x$data))`.
Backtrace:
1. `%>%`(...)
18. base::.handleSimpleError(...)
19. dplyr:::h(simpleError(msg, call))
<error/dplyr:::mutate_error>
Problem with `mutate()` input `means`.
x undefined columns selected
ℹ Input `means` is `map(models, ~emmeans::emmeans(.x, "clarity", data = .x$data))`.
Backtrace:
█
1. ├─`%>%`(...)
2. ├─dplyr::mutate(...)
3. ├─dplyr:::mutate.data.frame(...)
4. │ └─dplyr:::mutate_cols(.data, ...)
5. │ ├─base::withCallingHandlers(...)
6. │ └─mask$eval_all_mutate(dots[[i]])
7. ├─purrr::map(models, ~emmeans::emmeans(.x, "clarity", data = .x$data))
8. │ └─.f(.x[[i]], ...)
9. │ └─emmeans::emmeans(.x, "clarity", data = .x$data)
10. │ ├─base::do.call(ref_grid, args)
11. │ └─(function (object, at, cov.reduce = mean, cov.keep = get_emm_option("cov.keep"), ...
12. │ ├─emmeans::recover_data(object, data = as.data.frame(data), ...)
13. │ └─emmeans:::recover_data.gls(...)
14. │ └─emmeans:::recover_data.call(...)
15. │ ├─tbl[, vars, drop = FALSE]
16. │ └─base::`[.data.frame`(tbl, , vars, drop = FALSE)
17. │ └─base::stop("undefined columns selected")
18. └─base::.handleSimpleError(...)
19. └─dplyr:::h(simpleError(msg, call))
The code runs OK at this step.
diamonds_emm <- diamonds %>%
group_by(cut) %>% nest() %>%
mutate(models=map(data,~gls(price ~ x + y + z + clarity,
weights = varIdent(form = ~ 1|color),
data =.x)))
How do I work around this problem? Thank you.
Update: the map2
function from Ronak's answer solved the problem at the means
steps but it won't do pairwise contrasts. What did I miss?
diamonds %>%
group_by(cut) %>%
nest() %>%
mutate(models=map(data,~gls(price ~ x + y + z + clarity,
weights = varIdent(form = ~ 1|color),
data =.x)),
means = map2(data, models,~emmeans::emmeans(.y,"clarity",data=.x)),
p_cont = map2(means, ~emmeans::contrast(.y, "pairwise",infer = c(T,T)))) %>%
ungroup %>%
mutate(across(models:p_cont, setNames, .$cut)) -> result
Error: Problem with `mutate()` input `p_cont`.
x object '.z' not found
ℹ Input `p_cont` is `map(means, ~emmeans::contrast(.y, "pairwise", infer = c(T, T)))`.
ℹ The error occurred in group 1: cut = "Fair".
Giving a new name to the input at the p_cont
step, such as ~emmeans::contrast(.z, "pairwise", infer = c(T, T)))
didn't solve the problem.
Pass data as well as model in the
emmeans
step usingmap2
. Forcontrasts
andjoint_tests
you can usemap
.