i am building a federated learning model, i would need to json encode my model so that i can exchange it with new workers i add to the network.
could you help me? is it possible to encode a model in a json file so that it can be sent?
below i put my net class i tried with the class methods but of course i get the error: object not serialisable in json.
thanks for your help
class net(nn.Module):
def __init__(self):
super( net, self).__init__()
self.c1 = nn.Conv2d(3, 32, 3)
self.b1 = nn.BatchNorm2d(32)
self.c2 = nn.Conv2d(32, 64, 3)
self.p1 = nn.MaxPool2d(2, 2)
self.c3 = nn.Conv2d(64, 128, 3)
self.d1 = nn.Dropout(0.5)
self.c4 = nn.Conv2d(128, 256, 5)
self.p2 = nn.MaxPool2d(2, 2)
self.c5 = nn.Conv2d(256, 128, 3)
self.p3 = nn.MaxPool2d(2, 2)
self.d2 = nn.Dropout(0.2)
self.l1 = nn.Linear(29*29*128, 128)
self.l2 = nn.Linear(128, 32)
self.l3 = nn.Linear(32 , 10)
self.weights_initialization()
def forward(self, x):
x = F.relu(self.c1(x))
x = self.b1(x)
x = F.relu(self.c2(x))
x = self.p1(x)
x = F.relu(self.c3(x))
x = self.d1(x)
x = F.relu(self.c4(x))
x = self.p2(x)
x = F.relu(self.c5(x))
x = self.p3(x)
x = self.d2(x)
x = x.view(x.size(0), -1)
x = F.relu(self.l1(x))
x = self.d2(x)
x = F.relu(self.l2(x))
x = self.l3(x)
def forward(self, x):
out = F.relu(self.fc1(x))
out = F.relu(self.fc2(out))
return self.output(out)
def weights_initialization(self):
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight)
nn.init.constant_(m.bias, 0)
model = net()
I have tried the classical methods but have not succeeded in any way in doing this encoding. I currently have no idea how to do this, can you help me?