Encountering errors upon CosineSimilarity query on ElasticSearch. What could be the issue on the query?

56 Views Asked by At

I have the following query that should perform CosineSimilarity:

{
"query": {
    "function_score": {
        "query": {
            "match_all": {}
        },
        "script_score": {
            "script": {
                "source": "cosineSimilarity (params.queryVector, doc['embedding') + 1.0",
                "params": {
                    "queryVector": [-0.0011626648483797908,
                        0.005565074738115072,
                        ...]
                }
            }
        }
    }
}

We use ElasticSearch 7.10.0. I can't pinpoint what the issue is in this test query. From what I know CosineSimilarity should be available in ES 7.10+. The error encountered was:

{
"error": {
    "root_cause":[...]
    "type": "search_phase_execution_exception",
    "reason": "all shards failed",
    "phase": "query",
    "grouped": true,
    "failed_shards": [...],
                    "script": "cosineSimilarity (params.queryVector, doc['embedding']) + 1.0",.. },
                    "caused_by": {
                        "type": "illegal_argument_exception",
                        "reason": "Unknown call [cosineSimilarity] with [2] arguments."
                    }
                }
            }
        }
    ],
    "caused_by": {
        "type": "script_exception",
        "reason": "compile error",
        "script_stack": [
            "cosineSimilarity (params. ...",
            "^---- HERE"
        ],
        "script": "cosineSimilarity (params.queryVector, doc['embedding']) + 1.0"...
        "caused_by": {
            "type": "illegal_argument_exception",
            "reason": "Unknown call [cosineSimilarity] with [2] arguments."
        }
    }
},
"status": 400 }

Here's the property mapping of the embedding in the index:

 "embeddings": {
                "type": "knn_vector",
                "dimension": 1536
            }...

I followed the documentation in ES for CosineSimilarity but still encountering this error.

0

There are 0 best solutions below