Error implementing Mixture of Gaussians in Edward Lib

106 Views Asked by At

I'm trying to code a simple Gaussian mixture in Edward. I follow the basics steps and tutorials. The code seems to be OK, but when I run it I get the following error:

Received a label value of 1 which is outside the valid range of [0, 2). Label values: 2 2 2 2...

This is the of code I'm using. It is quite simple:

def build_toy_dataset(N):
  pi = np.array([0.4, 0.6])
  mus = [1, -1]
  stds = [0.1, 0.1]
  x = np.zeros(N, dtype=np.float32)
  for n in range(N):
    k = np.argmax(np.random.multinomial(1, pi))
    x[n] = np.random.normal(mus[k], stds[k])

  return x


N = 500  # number of data points
K = 2  # number of components
D = 1  # dimensionality of data

x_train = build_toy_dataset(N)

pi = Dirichlet(np.zeros(K, dtype=np.float32))
mu = Normal(loc = 0.0, scale = 1.0, sample_shape = K)
sigma = InverseGamma(1.0, 2.0, sample_shape=K)

x = ParamMixture(pi, {'loc': mu, 'scale': tf.sqrt(sigma)},
                 Normal,
                 sample_shape=N)
z = x.cat

qpi = Dirichlet(tf.Variable(tf.ones(K) / K))
qmu = Normal(loc = tf.Variable(0.0), scale = tf.nn.softplus(tf.Variable(0.0)), sample_shape = K)
qsigma = InverseGamma(tf.Variable(2.0), tf.Variable(2.0), sample_shape = K)

qz = Categorical(logits = tf.Variable(tf.zeros([N,K])))

inference = ed.ScoreKLqp({pi: qpi, mu: qmu, sigma: qsigma, z: qz},
                     data={x: x_train})
inference.initialize()

sess = ed.get_session()
tf.global_variables_initializer().run()

for _ in range(inference.n_iter):
  info_dict = inference.update()
  inference.print_progress(info_dict)
0

There are 0 best solutions below