Error in using knn for multidimensional data

247 Views Asked by At

I am a beginer in Machine Learning, I am trying to classify multi dimensional data into two classes. Each data point is 40x6 float values. To begin with I have read my csv file. In this file shot number represents data point.

https://docs.google.com/spreadsheets/d/1tW1xJqnNZa1PhVDAE-ieSVbcdqhT8XfYGy8ErUEY_X4/edit?usp=sharing

Here is the code in python:

import pandas as pd
  1 import numpy as np
  2 import matplotlib.pyplot as plot
  3
  4 from sklearn.neighbors import KNeighborsClassifier
  5
  6 # Read csv data into pandas data frame
  7 data_frame = pd.read_csv('data.csv')
  8
  9 extract_columns = ['LinearAccX', 'LinearAccY', 'LinearAccZ', 'Roll', 'pitch', 'compass']
 10
 11 # Number of sample in one shot
 12 samples_per_shot = 40
 13
 14 # Calculate number of shots in dataframe
 15 count_of_shots = len(data_frame.index)/samples_per_shot
 16
 17 # Initialize Empty data frame
 18 training_index = range(count_of_shots)
 19 training_data_list = []
 20
 21 # flag for backward compatibility
 22 make_old_data_compatible_with_new = 0
 23
 24 if make_old_data_compatible_with_new:
 25     # Convert 40 shot data to 25 shot data
 26     # New logic takes 25 samples/shot
 27     # old logic takes 40 samples/shot
 28     start_shot_sample_index = 9
 29     end_shot_sample_index = 34
 30 else:
 31     # Start index from 1 and continue till lets say 40
 32     start_shot_sample_index = 1
 33     end_shot_sample_index = samples_per_shot
 34
 35 # Extract each shot into pandas series
 36 for shot in range(count_of_shots):
 37      # Extract current shot
 38      current_shot_data = data_frame[data_frame['shot_no']==(shot+1)]
 39
 40      # Select only the following column
 41      selected_columns_from_shot = current_shot_data[extract_columns]
 42
 43      # Select columns from selected rows
 44      # Find start and end row indexes
 45      current_shot_data_start_index = shot * samples_per_shot + start_shot_sample_index
 46      current_shot_data_end_index = shot * samples_per_shot + end_shot_sample_index
 47      selected_rows_from_shot = selected_columns_from_shot.ix[current_shot_data_start_index:curren    t_shot_data_end_index]
 48
 49      # Append to list of lists
 50      # Convert selected short into multi-dimensional array
 51  

    training_data_list.append([selected_columns_from_shot[extract_columns[index]].values.tolist(    ) for index in range(len(extract_columns))])
  8
  7 # Append each sliced shot into training data
  6 training_data = pd.DataFrame(training_data_list, columns=extract_columns)
  5 training_features = [1 for i in range(count_of_shots)]
  4 knn = KNeighborsClassifier(n_neighbors=3)
  3 knn.fit(training_data, training_features)

training_data_list.append([selected_columns_from_shot[extract_columns[index]].values.tolist(    ) for index in range(len(extract_columns))])

After running the above code, I am getting an error

ValueError: setting an array element with a sequence.

for the line

knn.fit(training_data, training_features)
0

There are 0 best solutions below