I have a dataframe with X, Y coordinate values and corresponding ID values in Val.
df1 <- data.frame(X=rnorm(1000,0,1), Y=rnorm(1000,0,1),
ID=paste(rep("ID", 1000), 1:1000, sep="_"),
Type=rep("ID",1000),
Val=c(rep(c('Type1','Type2'),300),
rep(c('Type3','Type4'),200)))
Adding the missing IDs for the existing X,Y values in df1.
dat2 <- data.frame(Type=rep('D',8),
Val=paste(rep("D", 8),
sample(1:2,8,replace=T), sep="_"))
dat2 <- cbind(df[sample(1:1000,80),1:3],dat2)
df1 <- rbind(df1, dat2)
Looking at the frequency of ID values.
df1 %>% count(Val)
# # A tibble: 6 x 2
# Val n
# <fctr> <int>
# 1 Type1 300
# 2 Type2 300
# 3 Type3 200
# 4 Type4 200
# 5 D_1 60
# 6 D_2 20
I am interested in only two IDs for further analysis and the rest can be grouped into a random value. With the help of fct_other function, I have recoded them into Other and the frequency looks as expected.
df1 %>% mutate(Val=fct_other(Val,keep=c('D_1','D_2'))) %>% count(Val)
# # A tibble: 3 x 2
# Val n
# <fctr> <int>
# 1 D_1 60
# 2 D_2 20
# 3 Other 1000
As the fct_other function puts "Other" values as the last factor value and I want it at first, I used the other function fct_relevel available in the same package.
df1 %>% mutate(Val=fct_other(Val,keep=c('Type5','Type6'))) %>%
mutate(Val=fct_relevel(Val,'Other'))%>%
count(Val)
# # A tibble: 1 x 2
# Val n
# <fctr> <int>
# 1 Other 1080
But it is giving unexpected results. Any idea on what might have gone wrong?
Update: The error was trying to keep unavailable values.
df1 %>% mutate(Val=fct_other(Val,keep=c('D_1','D_2'))) %>%
mutate(Val=fct_relevel(Val,'Other'))%>% count(Val)
# # A tibble: 3 x 2
# Val n
# <fctr> <int>
# 1 Other 1000
# 2 D_1 30
# 3 D_2 50
When I tried to retain the unique values, the selected ones are missing:
df1 %>% mutate(Val=fct_other(Val,keep=c('D_1','D_2'))) %>%
mutate(Val=fct_relevel(Val,'Other'))%>%
arrange(Val) %>% filter(!duplicated(.[,c("X","Y")])) %>% count(Val)
# # A tibble: 1 x 2
# Val n
# <fctr> <int>
# 1 Other 1000
Relevelling after the extraction of unique values does the job:
df1 %>% mutate(Val=fct_other(Val,keep=c('D_1','D_2'))) %>%
arrange(Val) %>% filter(!duplicated(.[,c("X","Y")])) %>%
mutate(Val=fct_relevel(Val,'Other')) %>%
arrange(Val) %>% count(Val)
# # A tibble: 3 x 2
# Val n
# <fctr> <int>
# 1 Other 920
# 2 D_1 30
# 3 D_2 50
Is this the efficient way of doing it?