evaluate function not receving the original image for PSNR calulation

29 Views Asked by At

i've been experimenting with salt and pepper image denoising using fuzzy logic and genetic algorithm for optimization, so far the code looks good but when i try to run it i get an error saying one of the functions is missing a parameter while the parameter is given during function call, i would really love any help i can get please (crying)...

the code is supposed to pass the original image and noise image as arrays to the evaluate function to calculate psnr but it doesn't get the original image only the noisy one

here's the trouble function

def evaluate_membership(noisy_array,original):
    try:
        # Calculate denoised image and PSNR
        denoised_image = cv2.fastNlMeansDenoising(noisy_array, h=10, templateWindowSize=7, searchWindowSize=21)
        mse = np.mean((denoised_image - original) ** 2)
        max_pixel = 255.0
        psnr = 10 * np.log10((max_pixel ** 2) / mse)

        # Calculate salt and pepper noise reduction
        original_non_zero = np.count_nonzero(original)
        denoised_non_zero = np.count_nonzero(denoised_image)
        noise_reduced = (original_non_zero - denoised_non_zero) / original_non_zero

        # Combine PSNR and noise reduction into a single fitness value
        fitness = psnr * noise_reduced

        return fitness,
    except Exception as e:
        # Log the error and return a negative value
        app.logger.error(f"Error in evaluate_membership: {str(e)}")
        return -1,


toolbox.register("evaluate", evaluate_membership)

here's where it was called

def denoise_image(noisy_array, original_image):
    try:
        noise_removal = con.ControlSystemSimulation(noise_control)
        population = toolbox.population(n=50)
        algorithms.eaMuPlusLambda(population, toolbox, mu=10, lambda_=100, cxpb=0.7, mutpb=0.3, ngen=50, stats=None, halloffame=None, verbose=True)
        best_individual = tools.selBest(population, k=1)[0]
        intensity.automf(names=['low', 'medium', 'high'], variable_type='quality')
        denoised_array = np.zeros_like(noisy_array)

        for x in range(256):
            for y in range(256):
                membership = evaluate_membership(noisy_array[x, y], original_image[x, y])
                noise_removal.input['intensity'] = noisy_array[x, y]

here's the error

Error in denoise_image: evaluate_membership() missing 1 required positional argument: 'original' ERROR:untitled2:Image denoising failed

here's the bulk of the code if it's needed


# Configure logging
logging.basicConfig(level=logging.DEBUG)

#create a ControlSystem and ControlSystemSimulation
pixel_intensity = np.arange(0, 256, 1)
intensity = con.Antecedent(pixel_intensity, 'intensity')
output = con.Consequent(pixel_intensity, 'output')

# Define membership functions for salt and pepper noise reduction
intensity['low'] = fuzz.trimf(intensity.universe, [0, 0, 128])
intensity['medium'] = fuzz.trimf(intensity.universe, [0, 128, 255])
intensity['high'] = fuzz.trimf(intensity.universe, [128, 255, 255])

output['output_low'] = fuzz.trapmf(output.universe, [0, 0, 30, 60])
output['output_medium'] = fuzz.trapmf(output.universe, [30, 60, 120, 180])
output['output_high'] = fuzz.trapmf(output.universe, [120, 180, 255, 255])

rule = con.Rule(intensity['low'], output['output_low'])
rule1 = con.Rule(intensity['medium'], output['output_medium'])
rule2 = con.Rule(intensity['high'], output['output_high'])
noise_control = con.ControlSystem([rule,rule1,rule2])

# Genetic Algorithm for Membership Function Optimization
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)
toolbox = base.Toolbox()
toolbox.register("params", random.uniform, 0.0, 1.0)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.params, n=9)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("mate", tools.cxBlend, alpha=0.5)
toolbox.register("mutate", tools.mutGaussian, mu=0.0, sigma=0.2, indpb=0.2)
toolbox.register("select", tools.selTournament, tournsize=3)

# Define your custom evaluation function using PSNR and salt and pepper noise reduction
def evaluate_membership(noisy_array,original):
    try:
        # Calculate denoised image and PSNR
        denoised_image = cv2.fastNlMeansDenoising(noisy_array, h=10, templateWindowSize=7, searchWindowSize=21)
        mse = np.mean((denoised_image - original) ** 2)
        max_pixel = 255.0
        psnr = 10 * np.log10((max_pixel ** 2) / mse)

        # Calculate salt and pepper noise reduction
        original_non_zero = np.count_nonzero(original)
        denoised_non_zero = np.count_nonzero(denoised_image)
        noise_reduced = (original_non_zero - denoised_non_zero) / original_non_zero

        # Combine PSNR and noise reduction into a single fitness value
        fitness = psnr * noise_reduced

        return fitness,
    except Exception as e:
        # Log the error and return a negative value
        app.logger.error(f"Error in evaluate_membership: {str(e)}")
        return -1,


toolbox.register("evaluate", evaluate_membership)

# Define the fuzzy estimate function
def fuzzy_estimate(image, x, y):
    # Define a neighborhood range, for instance, a 3x3 window
    neighborhood = image[max(0, x-1):min(256, x+2), max(0, y-1):min(256, y+2)]
    
    # Compute the mean of the non-zero pixel values in the neighborhood
    non_zero_values = neighborhood[neighborhood != 0]
    
    if len(non_zero_values) > 0:
        estimated_value = np.mean(non_zero_values)
    else:
        # If all surrounding pixels are zeros, estimate with a default value or any other method suitable for your scenario
        estimated_value = 128  # For instance, replace with 128 if no surrounding non-zero pixels are found
    
    return estimated_value

# Function to denoise the image
def denoise_image(noisy_array, original_image):
    try:
        noise_removal = con.ControlSystemSimulation(noise_control)
        population = toolbox.population(n=50)
        algorithms.eaMuPlusLambda(population, toolbox, mu=10, lambda_=100, cxpb=0.7, mutpb=0.3, ngen=50, stats=None, halloffame=None, verbose=True)
        best_individual = tools.selBest(population, k=1)[0]
        intensity.automf(names=['low', 'medium', 'high'], variable_type='quality')
        denoised_array = np.zeros_like(noisy_array)

        for x in range(256):
            for y in range(256):
                membership = evaluate_membership(noisy_array[x, y], original_image[x, y])
                noise_removal.input['intensity'] = noisy_array[x, y]
                noise_removal.compute()
                denoised_array[x, y] = noise_removal.output['output'] * membership * best_individual

        # After denoising, replace missing pixels based on a condition (e.g., zeros)
        missing_pixels = (noisy_array == 0)  # Modify this condition based on how missing pixels are represented
        for x in range(256):
            for y in range(256):
                if missing_pixels[x, y]:  # Check if the pixel is missing
                    # If the pixel is missing, estimate the value using fuzzy logic
                    estimated_value = fuzzy_estimate(denoised_array, x, y)  # Implement fuzzy estimation function
                    denoised_array[x, y] = estimated_value  # Replace missing pixel with the estimated value

        denoised_image = cv2.cvtColor(denoised_array, cv2.IMREAD_GRAYSCALE)
        return denoised_image
    except Exception as e:
        app.logger.error(f"Error in denoise_image: {str(e)}")
        return None

    except Exception as e:
        # Log the error for debugging
        app.logger.error(f"Error in denoise_image: {str(e)}")
        return None



@app.route('/')
def index():
    return render_template('index.html')

@app.route('/upload', methods=['POST'])
def upload():
    try:
        if 'noisy_image' in request.files and 'original_image' in request.files:
            noisy_image = request.files['noisy_image']
            original_image = request.files['original_image']
            if noisy_image.filename != '' and original_image.filename != '':
                # Read the uploaded images
                noisy_img = cv2.imdecode(np.frombuffer(noisy_image.read(), dtype=np.uint8), cv2.IMREAD_UNCHANGED)

                original_img = cv2.imdecode(np.frombuffer(original_image.read(), dtype = np.uint8), cv2.IMREAD_UNCHANGED)

                # Perform denoising
                denoised_image = denoise_image(noisy_img, original_img)

                if denoised_image is not None:
                    # Convert the denoised image to bytes
                    _, img_buffer = cv2.imencode('.jpeg', denoised_image)
                    img_bytes = img_buffer.tobytes()

                    # Create a BytesIO object and return the denoised image
                    img_io = BytesIO(img_bytes)
                    return send_file(img_io, mimetype='image/jpeg')
                else:
                    app.logger.error('Image denoising failed')
                    return 'Image denoising failed'
    
        app.logger.error('Image upload failed')
        return 'Image upload failed'
    except Exception as e:
        # Log the error for debugging
        app.logger.error(f"Error: {str(e)}")
        return 'An error occurred while processing the image'
0

There are 0 best solutions below