i've been experimenting with salt and pepper image denoising using fuzzy logic and genetic algorithm for optimization, so far the code looks good but when i try to run it i get an error saying one of the functions is missing a parameter while the parameter is given during function call, i would really love any help i can get please (crying)...
the code is supposed to pass the original image and noise image as arrays to the evaluate function to calculate psnr but it doesn't get the original image only the noisy one
here's the trouble function
def evaluate_membership(noisy_array,original):
try:
# Calculate denoised image and PSNR
denoised_image = cv2.fastNlMeansDenoising(noisy_array, h=10, templateWindowSize=7, searchWindowSize=21)
mse = np.mean((denoised_image - original) ** 2)
max_pixel = 255.0
psnr = 10 * np.log10((max_pixel ** 2) / mse)
# Calculate salt and pepper noise reduction
original_non_zero = np.count_nonzero(original)
denoised_non_zero = np.count_nonzero(denoised_image)
noise_reduced = (original_non_zero - denoised_non_zero) / original_non_zero
# Combine PSNR and noise reduction into a single fitness value
fitness = psnr * noise_reduced
return fitness,
except Exception as e:
# Log the error and return a negative value
app.logger.error(f"Error in evaluate_membership: {str(e)}")
return -1,
toolbox.register("evaluate", evaluate_membership)
here's where it was called
def denoise_image(noisy_array, original_image):
try:
noise_removal = con.ControlSystemSimulation(noise_control)
population = toolbox.population(n=50)
algorithms.eaMuPlusLambda(population, toolbox, mu=10, lambda_=100, cxpb=0.7, mutpb=0.3, ngen=50, stats=None, halloffame=None, verbose=True)
best_individual = tools.selBest(population, k=1)[0]
intensity.automf(names=['low', 'medium', 'high'], variable_type='quality')
denoised_array = np.zeros_like(noisy_array)
for x in range(256):
for y in range(256):
membership = evaluate_membership(noisy_array[x, y], original_image[x, y])
noise_removal.input['intensity'] = noisy_array[x, y]
here's the error
Error in denoise_image: evaluate_membership() missing 1 required positional argument: 'original' ERROR:untitled2:Image denoising failed
here's the bulk of the code if it's needed
# Configure logging
logging.basicConfig(level=logging.DEBUG)
#create a ControlSystem and ControlSystemSimulation
pixel_intensity = np.arange(0, 256, 1)
intensity = con.Antecedent(pixel_intensity, 'intensity')
output = con.Consequent(pixel_intensity, 'output')
# Define membership functions for salt and pepper noise reduction
intensity['low'] = fuzz.trimf(intensity.universe, [0, 0, 128])
intensity['medium'] = fuzz.trimf(intensity.universe, [0, 128, 255])
intensity['high'] = fuzz.trimf(intensity.universe, [128, 255, 255])
output['output_low'] = fuzz.trapmf(output.universe, [0, 0, 30, 60])
output['output_medium'] = fuzz.trapmf(output.universe, [30, 60, 120, 180])
output['output_high'] = fuzz.trapmf(output.universe, [120, 180, 255, 255])
rule = con.Rule(intensity['low'], output['output_low'])
rule1 = con.Rule(intensity['medium'], output['output_medium'])
rule2 = con.Rule(intensity['high'], output['output_high'])
noise_control = con.ControlSystem([rule,rule1,rule2])
# Genetic Algorithm for Membership Function Optimization
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)
toolbox = base.Toolbox()
toolbox.register("params", random.uniform, 0.0, 1.0)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.params, n=9)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("mate", tools.cxBlend, alpha=0.5)
toolbox.register("mutate", tools.mutGaussian, mu=0.0, sigma=0.2, indpb=0.2)
toolbox.register("select", tools.selTournament, tournsize=3)
# Define your custom evaluation function using PSNR and salt and pepper noise reduction
def evaluate_membership(noisy_array,original):
try:
# Calculate denoised image and PSNR
denoised_image = cv2.fastNlMeansDenoising(noisy_array, h=10, templateWindowSize=7, searchWindowSize=21)
mse = np.mean((denoised_image - original) ** 2)
max_pixel = 255.0
psnr = 10 * np.log10((max_pixel ** 2) / mse)
# Calculate salt and pepper noise reduction
original_non_zero = np.count_nonzero(original)
denoised_non_zero = np.count_nonzero(denoised_image)
noise_reduced = (original_non_zero - denoised_non_zero) / original_non_zero
# Combine PSNR and noise reduction into a single fitness value
fitness = psnr * noise_reduced
return fitness,
except Exception as e:
# Log the error and return a negative value
app.logger.error(f"Error in evaluate_membership: {str(e)}")
return -1,
toolbox.register("evaluate", evaluate_membership)
# Define the fuzzy estimate function
def fuzzy_estimate(image, x, y):
# Define a neighborhood range, for instance, a 3x3 window
neighborhood = image[max(0, x-1):min(256, x+2), max(0, y-1):min(256, y+2)]
# Compute the mean of the non-zero pixel values in the neighborhood
non_zero_values = neighborhood[neighborhood != 0]
if len(non_zero_values) > 0:
estimated_value = np.mean(non_zero_values)
else:
# If all surrounding pixels are zeros, estimate with a default value or any other method suitable for your scenario
estimated_value = 128 # For instance, replace with 128 if no surrounding non-zero pixels are found
return estimated_value
# Function to denoise the image
def denoise_image(noisy_array, original_image):
try:
noise_removal = con.ControlSystemSimulation(noise_control)
population = toolbox.population(n=50)
algorithms.eaMuPlusLambda(population, toolbox, mu=10, lambda_=100, cxpb=0.7, mutpb=0.3, ngen=50, stats=None, halloffame=None, verbose=True)
best_individual = tools.selBest(population, k=1)[0]
intensity.automf(names=['low', 'medium', 'high'], variable_type='quality')
denoised_array = np.zeros_like(noisy_array)
for x in range(256):
for y in range(256):
membership = evaluate_membership(noisy_array[x, y], original_image[x, y])
noise_removal.input['intensity'] = noisy_array[x, y]
noise_removal.compute()
denoised_array[x, y] = noise_removal.output['output'] * membership * best_individual
# After denoising, replace missing pixels based on a condition (e.g., zeros)
missing_pixels = (noisy_array == 0) # Modify this condition based on how missing pixels are represented
for x in range(256):
for y in range(256):
if missing_pixels[x, y]: # Check if the pixel is missing
# If the pixel is missing, estimate the value using fuzzy logic
estimated_value = fuzzy_estimate(denoised_array, x, y) # Implement fuzzy estimation function
denoised_array[x, y] = estimated_value # Replace missing pixel with the estimated value
denoised_image = cv2.cvtColor(denoised_array, cv2.IMREAD_GRAYSCALE)
return denoised_image
except Exception as e:
app.logger.error(f"Error in denoise_image: {str(e)}")
return None
except Exception as e:
# Log the error for debugging
app.logger.error(f"Error in denoise_image: {str(e)}")
return None
@app.route('/')
def index():
return render_template('index.html')
@app.route('/upload', methods=['POST'])
def upload():
try:
if 'noisy_image' in request.files and 'original_image' in request.files:
noisy_image = request.files['noisy_image']
original_image = request.files['original_image']
if noisy_image.filename != '' and original_image.filename != '':
# Read the uploaded images
noisy_img = cv2.imdecode(np.frombuffer(noisy_image.read(), dtype=np.uint8), cv2.IMREAD_UNCHANGED)
original_img = cv2.imdecode(np.frombuffer(original_image.read(), dtype = np.uint8), cv2.IMREAD_UNCHANGED)
# Perform denoising
denoised_image = denoise_image(noisy_img, original_img)
if denoised_image is not None:
# Convert the denoised image to bytes
_, img_buffer = cv2.imencode('.jpeg', denoised_image)
img_bytes = img_buffer.tobytes()
# Create a BytesIO object and return the denoised image
img_io = BytesIO(img_bytes)
return send_file(img_io, mimetype='image/jpeg')
else:
app.logger.error('Image denoising failed')
return 'Image denoising failed'
app.logger.error('Image upload failed')
return 'Image upload failed'
except Exception as e:
# Log the error for debugging
app.logger.error(f"Error: {str(e)}")
return 'An error occurred while processing the image'