I have asynchronous operation implementation like this:
class AsyncOperation: Operation {
private enum State: String {
case ready, executing, finished
fileprivate var keyPath: String {
return "is\(rawValue.capitalized)"
}
}
private let stateAccessQueue = DispatchQueue(label: "com.beamo.asyncoperation.state")
private var unsafeState = State.ready
private var state: State {
get {
return stateAccessQueue.sync {
return unsafeState
}
}
set {
willChangeValue(forKey: newValue.keyPath)
stateAccessQueue.sync(flags: [.barrier]) {
self.unsafeState = newValue
}
didChangeValue(forKey: newValue.keyPath)
}
}
override var isReady: Bool {
return super.isReady && state == .ready
}
override var isExecuting: Bool {
return state == .executing
}
override var isFinished: Bool {
return state == .finished
}
override var isAsynchronous: Bool {
return true
}
override func start() {
if isCancelled {
if !isFinished {
finish()
}
return
}
state = .executing
main()
}
public final func finish() {
state = .finished
}
}
App will download multiple resources with API. Implementation of downloader is managed by operation queue and custom asynchronous operation. Here is implementation of asynchronous downloader operation:
final class DownloaderOperation: AsyncOperation {
private let downloadTaskAccessQueue = DispatchQueue(label: "com.download.task.access.queue")
private var downloadTask: URLSessionDownloadTask?
private var threadSafeDownloadTask: URLSessionDownloadTask? {
get {
return downloadTaskAccessQueue.sync {
return downloadTask
}
}
set {
downloadTaskAccessQueue.sync(flags: [.barrier]) {
self.downloadTask = newValue
}
}
}
private let session: URLSession
let download: Download
let progressHandler: DownloadProgressHandler
init(session: URLSession,
download: Download,
progressHandler: @escaping DownloadProgressHandler) {
self.session = session
self.download = download
self.progressHandler = progressHandler
}
override func main() {
let bodyModel = DownloaderRequestBody(fileUrl: download.fileUrl.absoluteString)
let bodyData = (try? JSONEncoder().encode(bodyModel)) ?? Data()
var request = URLRequest(url: URL(string: "api url here")!)
request.httpMethod = "POST"
request.httpBody = bodyData
let task = session.downloadTask(with: request)
task.countOfBytesClientExpectsToSend = 512
task.countOfBytesClientExpectsToSend = 1 * 1024 * 1024 * 1024 // 1GB
task.resume()
threadSafeDownloadTask = task
DispatchQueue.main.async {
self.download.progress = 0
self.download.status = .inprogress
self.progressHandler(self.model, 0)
}
}
override func cancel() {
super.cancel()
threadSafeDownloadTask?.cancel()
}
}
And downloader implementation is here:
final class MultipleURLSessionDownloader: NSObject {
private(set) var unsafeOperations: [Download: DownloaderOperation] = [:]
private(set) var progressHandlers: [Download: DownloadProgressHandler] = [:]
private(set) var completionHandlers: [Download: DownloadCompletionHandler] = [:]
private let operationsAccessQueue = DispatchQueue(label: "com.multiple.downloader.operations")
private(set) var operations: [Download: DownloaderOperation] {
get {
return operationsAccessQueue.sync {
return unsafeOperations
}
}
set {
operationsAccessQueue.sync(flags: [.barrier]) {
self.unsafeOperations = newValue
}
}
}
private lazy var downloadOperationQueue: OperationQueue = {
var queue = OperationQueue()
queue.name = "com.multiple.downloader.queue"
queue.maxConcurrentOperationCount = 2
return queue
}()
private(set) var urlSession = URLSession.shared
init(configuration: URLSessionConfiguration = URLSessionConfiguration.background(withIdentifier: "com.multiple.downloader.session")) {
super.init()
configuration.isDiscretionary = false
configuration.sessionSendsLaunchEvents = true
configuration.timeoutIntervalForResource = 120
configuration.timeoutIntervalForRequest = 10
self.urlSession = URLSession(configuration: configuration, delegate: self, delegateQueue: nil)
}
deinit {
debugPrint("[MultipleURLSessionDownloader] deinit")
}
func startDownload(downloads: [Download],
progressHandler: @escaping DownloadProgressHandler,
completionHandler: @escaping DownloadCompletionHandler) {
for download in downloads {
startDownload(
download: download,
progressHandler: progressHandler,
completionHandler: completionHandler
)
}
}
func cancelDownload(download: Download) {
cancelOperation(download: download)
}
func cancelAllDownloads() {
for download in operations.keys {
cancelOperation(download: download)
}
urlSession.getTasksWithCompletionHandler { dataTasks, uploadTasks, downloadTasks in
dataTasks.forEach {
$0.cancel()
}
uploadTasks.forEach {
$0.cancel()
}
downloadTasks.forEach {
$0.cancel()
}
}
}
private func startDownload(download: Download,
progressHandler: @escaping DownloadProgressHandler,
completionHandler: @escaping DownloadCompletionHandler) {
download.status = .default
progressHandlers[download] = progressHandler
completionHandlers[download] = completionHandler
if let operation = operations[download] {
if operation.isExecuting,
let inProgressDownload = operations.keys.first(where: { $0.id == download.id }) {
progressHandlers[download]?(inProgressDownload, inProgressDownload.progress ?? 0)
}
} else {
let operation = DownloaderOperation(
session: urlSession,
download: download) {[weak self] (progressDownload, progress) in
self?.progressHandlers[progressDownload]?(progressDownload, progress)
}
operations[download] = operation
downloadOperationQueue.addOperation(operation)
}
}
private func cancelOperation(download: Download) {
download.status = .cancelled
operations[download]?.cancel()
callCompletion(download: download, error: nil)
}
private func callCompletion(download: Download,
error: DownloadError?) {
operations[download]?.finish()
operations[download] = nil
progressHandlers[download] = nil
download.progress = nil
let handler = completionHandlers[download]
completionHandlers[download] = nil
handler?(download, error)
}
}
There is 2 cancel method:
cancelDownload(download: Download)
cancelAllDownloads()
If download is canceled and tried to download multiple times app is crashed and crash log is here:
If download is cancelledAll and tried to download multiple times app is crashed and crash log is here:
And the strange thing here is if I open app by running from Xcode the crash is not happened. This is happening only when if I open app from device without running by Xcode.
For now I fixed replecaing operation queue with dispatch queue like this:
downloadOperationQueue.addOperation(operation)
downloadDispatchQueue.async {
operation.start()
}
And this is working fine without any crash.
I think crash is happening on addOperation
method of OperationQueue
, but I don't know the reason.
It does not make much sense to use operations in conjunction with a background
URLSession
. The whole idea of backgroundURLSession
is network requests proceed if the user leaves the app, and even if the app has been terminated in the course of its normal lifecycle (e.g., jettisoned due to memory pressure). But an operation queue cannot survive the termination of an app. If you really want to use operations with background session, you will need to figure out how you will handle network requests that are still underway, but for which there is no longer any operation to represent that request.Let us set that aside and look at the operation and diagnose the crash.
A critical issue is the
isFinished
KVO when the operation is canceled. The documentation is very clear that if the operation has started and is subsequently canceled, you must perform theisFinished
KVO notifications. If the task not yet started. If you do that, you can receive a warning:That would seem to suggest that one should not issue
isFinished
KVO notifications if an unstarted operation is canceled. But, note you absolutely must set the underlying state tofinished
, or else the unstarted canceled operations will be retained by the operation queue.But what is worse, that performing the
isFinished
KVO notifications for unstarted operations it can lead toNSKeyValueDidChangeWithPerThreadPendingNotifications
in the stack trace, just like you showed in your question. Here is my stack trace from my crash:So, all of that said, I discovered two work-arounds:
Use locks for synchronization rather than GCD. They are more performant, anyway, and in my experiments, avoid the crash. (This is an unsatisfying solution because it is unclear as to whether it really solved the root problem, or just moved the goal-posts sufficiently, such that the crash no longer manifests itself.)
Alternatively, when you set the state to
.finished
, only issue theisFinished
KVO if the operation was currently running. (This is also a deeply unsatisfying solution, as it is contemplated nowhere in Apple’s documentation. But it silences the above warning and eliminates the crash.)For example:
Basically, that sets the state to finished either way, with KVO notifications if the operation is executing, and without if not yet started when it is canceled.
So, you might end up with:
A few notes on the above:
If we refer to Listing 2-7 the old Concurrency Programming Guide: Operations, they illustrate (in Objective-C) the correct KVO notifications that must take place when we, for example, transition from “executing” to “finished”:
So, as we transition from
executing
tofinished
, we have to perform the notification for bothisExecuting
andisFinished
. But yourstate
setter is only performing the KVO for thenewValue
(thus, onlyisFinished
, neglecting to perform theisExecuting
-related KVO notifications). This is likely unrelated to your problem at hand, but is important, nonetheless.If you were to synchronize with GCD serial queue, the barrier becomes redundant. This lingering barrier was probably a legacy of a previous rendition using a reader-writer pattern. IMHO, the transition to a serial queue was prudent (as the reader-writer just introduces more problems than its negligible performance difference warrants). But if we eliminate the concurrent queue, we should also remove the redundant barrier. Or just eliminate GCD altogether as shown above.
I
guard
against state changes after the operation is already finished. This is a bit of defensive-programming adapted from Apple’s “Advanced NSOperations” implementation (which, admittedly, is no longer available on Apple’s site).I would not recommend making
finish
afinal
function. While unlikely, it is possible that a subclass might want to add functionality. So I removedfinal
.I moved the GCD synchronization code into its own method,
synchronized
, so that I could easily switch between different synchronization mechanisms.Given that
Operation
is anopen
class, I did the same here.