Export spark feature transformation pipeline to a file

477 Views Asked by At

PMML, Mleap, PFA currently only support row based transformations. None of them support frame based transformations like aggregates or groupby or join. What is the recommended way to export a spark pipeline consisting of these operations.

2

There are 2 best solutions below

3
On

PMML and PFA are standards for representing machine learning models, not data processing pipelines. A machine learning model takes in a data record, performs some computation on it, and emits an output data record. So by definition, you are working with a single isolated data record, not a collection/frame/matrix of data records.

If you need to represent complete data processing pipelines (where the ML model is just part of the workflow) then you need to look for other/combined standards. Perhaps SQL paired with PMML would be a good choice. The idea is that you want to perform data aggregation outside of the ML model, not inside it (eg. a SQL database will be much better at it than any PMML or PFA runtime).

0
On

I see 2 options wrt Mleap:

1) implement dataframe based transformers and the SQLTransformer-Mleap equivalent. This solution seems to be conceptually the best (since you can always encapsule such transformations in a pipeline element) but also alot of work tbh. See https://github.com/combust/mleap/issues/126

2) extend the DefaultMleapFrame with the respective operations, you want to perform and then actually apply the required actions to the data handed to the restserver within a modified MleapServing subproject.

I actually went with 2) and added implode, explode and join as methods to the DefaultMleapFrame and also a HashIndexedMleapFrame that allows for fast joins. I did not implement groupby and agg, but in Scala this is relatively easy to accomplish.