Extended version of the set cover problem

450 Views Asked by At

I don't generally ask questions on SO, so if this question seems inappropriate for SO, just tell me (help would still be appreciated of course).

I'm still a student and I'm currently taking a class in Algorithms. We recently learned about the Branch-and-Bound paradigm and since I didn't fully understand it, I tried to do some exercises in our course book. I came across this particular instance of the Set Cover problem with a special twist:

Let U be a set of elements and S = {S1, S2, ..., Sn} a set of subsets of U, where the union of all sets Si equals U. Outline a Branch-and-Bound algorithm to find a minimal subset Q of S, so that for all elements u in U there are at least two sets in Q, which contain u. Specifically, elaborate how to split the problem up into subproblems and how to calculate upper and lower bounds.

My first thought was to sort all the sets Si in S in descending order, according to how many elements they contain which aren't yet covered at least twice by the currently chosen subsets of S, so our current instance of Q. I was then thinking of recursively solving this, where I choose the first set Si in the sorted order and make one recursive call, where I take this set Si and one where I don't (meaning from those recursive calls onwards the subset is no longer considered). If I choose it I would then go through each element in this chosen subset Si and increase a counter for all its elements (before the recursive call), so that I'll eventually know, when an element is already covered by two or more chosen subsets. Since I sort the not chosen sets Si for each recursive call, I would theoretically (in my mind at least) always be making the best possible choice for the moment. And since I basically create a binary tree of recursive calls, because I always make one call with the current best subset chosen and one where I don't I'll eventually cover all 2^n possibilities, meaning eventually I'll find the optimal solution.

My problem now is I don't know or rather understand how I would implement a heuristic for upper and lower bounds, so the algorithm can discard some of the paths in the binary tree, which will never be better than the current best Q. I would appreciate any help I could get.

2

There are 2 best solutions below

0
On

Here's a simple lower bound heuristic: Find the set containing the largest number of not-yet-twice-covered elements. (It doesn't matter which set you pick if there are multiple sets with the same, largest possible number of these elements.) Suppose there are u of these elements in total, and this set contains k <= u of them. Then, you need to add at least u/k further sets before you have a solution. (Why? See if you can prove this.)

This lower bound works for the regular set cover problem too. As always with branch and bound, using it may or may not result in better overall performance on a given instance than simply using the "heuristic" that always returns 0.

0
On

First, some advice: don't re-sort S every time you recurse/loop. Sorting is an expensive operation (O(N log N)) so putting it in a loop or a recursion usually costs more than you gain from it. Generally you want to sort once at the beginning, and then leverage that sort throughout your algorithm.

The sort you've chosen, descending by the length of the S subsets is a good "greedy" ordering, so I'd say just do that upfront and don't re-sort after that. You don't get to skip over subsets that are not ideal within your recursion, but checking a redundant/non-ideal subset is still faster than re-sorting every time.

Now what upper/lower bounds can you use? Well generally, you want your bounds and bounds-checking to be as simple and efficient as possible because you are going to be checking them a lot.

With this in mind, an upper bounds is easy: use the shortest set-length solution that you've found so far. Initially set your upper-bounds as var bestQlength = int.MaxVal, some maximum value that is greater than n, the number of subsets in S. Then with every recursion you check if currentQ.length > bestQlength, if so then this branch is over the upper-bounds and you "prune" it. Obviously when you find a new solution, you also need to check if it is better (shorter) than your current bestQ and if so then update both bestQ and bestQlength at the same time.

A good lower bounds is a bit trickier, the simplest I can think of for this problem is: Before you add a new subset Si into your currentQ, check to see if Si has any elements that are not already in currentQ two or more times, if it does not, then this Si cannot contribute in any way to the currentQ solution that you are trying to build, so just skip it and move on to the next subset in S.