Extract `mvabund::anova.manyglm`'s p-values and tests as one table

387 Views Asked by At

I'd like to get the Univariate Tests section from the anova.manyglm's result but the default attributes give two separate tables so I am trying to merge them such that the test and the p-value columns of the same variable stay next to each other.

library(mvabund)
data("Tasmania")
attach(Tasmania)
tasmvabund=mvabund(copepods)
tas_mod = manyglm(tasmvabund~ block*treatment)
tas_sum <- summary.manyglm(tas_mod)
tas_aov <- anova.manyglm(tas_mod, resamp = "perm.resid",  p.uni= "adjusted", nBoot = 50)



  > str(tas_aov)
List of 11
 $ family      : chr "negative.binomial"
 $ p.uni       : chr "adjusted"
 $ test        : chr "Dev"
 $ cor.type    : chr "I"
 $ resamp      : chr "perm.resid"
 $ nBoot       : num 50
 $ shrink.param: num [1:4] 0 0 0 0
 $ n.bootsdone : num 50
 $ table       :'data.frame':   4 obs. of  4 variables:
  ..$ Res.Df  : int [1:4] 15 12 11 8
  ..$ Df.diff : num [1:4] NA 3 1 3
  ..$ Dev     : num [1:4] NA 117.5 66.9 37.4
  ..$ Pr(>Dev): num [1:4] NA 0.0196 0.0196 0.0588
  ..- attr(*, "heading")= chr [1:2] "Analysis of Deviance Table\n" "Model: tasmvabund ~ block * treatment"
  ..- attr(*, "title")= chr "\nMultivariate test:\n"
 $ uni.p       : num [1:4, 1:12] NA 0.4706 0.0196 0.451 NA ...
  ..- attr(*, "title")= chr "Univariate Tests:"
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:4] "(Intercept)" "block" "treatment" "block:treatment"
  .. ..$ : chr [1:12] "Ameira" "Adopsyllus" "Ectinosoma" "Ectinosomat" ...
 $ uni.test    : num [1:4, 1:12] NA 4.93 13.94 6.35 NA ...
  ..- attr(*, "title")= chr "Univariate Tests:"
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:4] "(Intercept)" "block" "treatment" "block:treatment"
  .. ..$ : chr [1:12] "Ameira" "Adopsyllus" "Ectinosoma" "Ectinosomat" ...
 - attr(*, "class")= chr "anova.manyglm"

This prints the Multivariate section only.

tas_aov$table
'data.frame':   4 obs. of  4 variables:
 $ Res.Df  : int  15 12 11 8
 $ Df.diff : num  NA 3 1 3
 $ Dev     : num  NA 117.5 66.9 37.4
 $ Pr(>Dev): num  NA 0.0196 0.0196 0.0588
 - attr(*, "heading")= chr [1:2] "Analysis of Deviance Table\n" "Model: tasmvabund ~ block * treatment"
 - attr(*, "title")= chr "\nMultivariate test:\n"

This prints the p-values of the Univariate tests only.

tas_aov$uni.p
 str(tas_aov$uni.p)
 num [1:4, 1:12] NA 0.4706 0.0196 0.451 NA ...
 - attr(*, "title")= chr "Univariate Tests:"
 - attr(*, "dimnames")=List of 2
  ..$ : chr [1:4] "(Intercept)" "block" "treatment" "block:treatment"
  ..$ : chr [1:12] "Ameira" "Adopsyllus" "Ectinosoma" "Ectinosomat" ...

And this prints the test table only.

tas_aov$uni.test
 str(tas_aov$uni.test)
 num [1:4, 1:12] NA 4.93 13.94 6.35 NA ...
 - attr(*, "title")= chr "Univariate Tests:"
 - attr(*, "dimnames")=List of 2
  ..$ : chr [1:4] "(Intercept)" "block" "treatment" "block:treatment"
  ..$ : chr [1:12] "Ameira" "Adopsyllus" "Ectinosoma" "Ectinosomat" ...

So I am trying to merge them and then arrange the columns by names but I haven't succeeded yet.

tab <- cbind(tas_aov$uni.p, tas_aov$uni.test)

tab[ , order(names(tab))]
Error in order(names(tab)) : argument 1 is not a vector

Ideally, I'd like just the original Univariate section because it has the column names neatly printed, i.e., the test next to the p-values but I am happy with just merging the tables. Thanks a lot for any hints.

1

There are 1 best solutions below

2
On BEST ANSWER

One approach would be to pivot both matrices longer and then inner join them:

library(tidyverse)
tas_aov$uni.test %>%
  as.data.frame %>%
  rownames_to_column("variable") %>%
  pivot_longer(-variable,names_to = "species", values_to = "test") %>%
inner_join({
tas_aov$uni.p %>%
    as.data.frame %>%
    rownames_to_column("variable") %>%
    pivot_longer(-variable,names_to = "species", values_to = "pval")}) %>%
dplyr::filter(!is.na(test))
# A tibble: 36 x 4
   variable species      test   pval
   <chr>    <chr>       <dbl>  <dbl>
 1 block    Ameira       4.93 0.549 
 2 block    Adopsyllus  17.6  0.0392
 3 block    Ectinosoma   7.71 0.549 
 4 block    Ectinosomat 10.9  0.235 
 5 block    Haloschizo   3.13 0.725 
 6 block    Lepta.A     20.9  0.0196
 7 block    Lepta.B      8.02 0.549 
 8 block    Lepta.C     13.8  0.0784
 9 block    Mictyricola  6.77 0.549 
10 block    Parevansula  6.10 0.549 
# … with 26 more rows

If you prefer, you could pivot back to wide:

tas_aov$uni.test %>%
  as.data.frame %>%
  rownames_to_column("variable") %>%
  pivot_longer(-variable,names_to = "species", values_to = "test") %>%
inner_join({
tas_aov$uni.p %>%
    as.data.frame %>%
    rownames_to_column("variable") %>%
    pivot_longer(-variable,names_to = "species", values_to = "pval")}) %>%
dplyr::filter(!is.na(test)) %>%
pivot_wider(id_cols = "species", names_from = "variable", 
            values_from = c("test","pval"),names_glue = "{variable}_{.value}") %>%
relocate("species", sort(names(.)))
# A tibble: 12 x 7
   species     block_pval block_test `block:treatment_pval` `block:treatment_test` treatment_pval treatment_test
   <chr>            <dbl>      <dbl>                  <dbl>                  <dbl>          <dbl>          <dbl>
 1 Ameira          0.549        4.93                  0.510             6.35               0.0196       1.39e+ 1
 2 Adopsyllus      0.0392      17.6                   0.765             1.30               0.961        9.10e- 2
 3 Ectinosoma      0.549        7.71                  0.784             0.836              0.0196       1.47e+ 1
 4 Ectinosomat     0.235       10.9                   0.784             1.12               0.922        4.09e- 1
 5 Haloschizo      0.725        3.13                  0.922             0.000168           0.490        2.10e+ 0
 6 Lepta.A         0.0196      20.9                   0.196            13.1                0.961        1.46e- 1
 7 Lepta.B         0.549        8.02                  0.471             7.40               0.725        1.36e+ 0
 8 Lepta.C         0.0784      13.8                   0.784             0.340              0.255        5.80e+ 0
 9 Mictyricola     0.549        6.77                  0.510             5.27               0.0392       1.17e+ 1
10 Parevansula     0.549        6.10                  0.706             1.73               1            1.78e-15
11 Quin            0.549        6.02                  0.922             0.000128           0.0784       8.81e+ 0
12 Rhizothrix      0.216       11.6                   0.922             0.00000308         0.137        7.83e+ 0