Do you have any code example or paper that refers to something like the following diagram?
I want to know why we want to stack multiple resnet blocks as opposed to multiple convolutional block as in more traditional architectures? Any code sample or referring to one will be really helpful.
Also, how can I transfer that to something like the following that can contain self-attention module for each resnet block?
Applying self-attention to the outputs of Resnet blocks at the very high resolution of the input image may lead to memory issues: The memory requirements of self-attention blocks grow quadratically with the input size (=resolution). This is why in, e.g., Xiaolong Wang, Ross Girshick, Abhinav Gupta, Kaiming He Non-Local Neural Networks (CVPR 2018) they introduced self-attention only at a very deep layer of the architecture, once the feature map was substantially sub-sampled.