find peak with various height on different sides in python

438 Views Asked by At

In the graph below, I want to find the major peaks of gray line. I used scipy.signal.find_peak and got the blue line as a result.

I used threshold to filter some minor peaks out, but that also filtered out peaks in the yellow circle, who has large height on one side but a small one on the other.

Source Code

After running this code, you will see a crosshair & will see the value of each point when hovering mouse over it.

line={'x':[3405.024, 3405.312, 3406.176, 3406.464, 3406.752, 3407.04, 3407.328, 3408.192, 3408.48, 3408.768, 3409.056, 3409.344, 3410.208, 3410.496, 3410.784, 3411.072, 3411.36, 3412.224, 3412.512, 3412.8, 3413.088, 3413.376, 3414.24, 3414.528, 3414.816, 3415.104, 3415.392, 3416.256, 3416.544, 3416.832, 3417.12, 3417.408, 3418.272, 3418.56, 3418.848, 3419.136, 3419.424, 3420.288, 3420.576, 3420.864, 3421.152, 3421.44, 3422.304, 3422.592, 3422.88, 3423.168, 3423.456, 3424.32, 3424.608, 3424.896, 3425.184, 3425.472, 3426.336, 3426.624, 3426.912, 3427.2, 3427.488, 3428.352, 3428.64, 3428.928, 3429.216, 3429.504, 3430.368, 3430.656, 3430.944, 3431.232, 3431.52, 3432.384, 3432.672, 3432.96, 3433.248, 3433.536, 3434.4, 3434.688, 3434.976, 3435.264, 3435.552, 3436.416, 3436.704, 3436.992, 3437.28, 3437.568, 3438.432, 3438.72, 3439.008, 3439.296, 3439.584, 3440.448, 3440.736, 3441.024, 3441.312, 3441.6, 3442.464, 3442.752, 3443.04, 3443.328, 3443.616, 3446.784, 3447.072, 3447.36, 3447.648, 3448.512, 3448.8, 3449.088, 3449.376, 3449.664, 3450.528, 3450.816, 3451.104, 3451.392, 3451.68, 3452.544, 3452.832, 3453.12, 3453.408, 3453.696, 3454.56, 3454.848, 3455.136, 3455.424, 3455.712, 3456.576, 3456.864, 3457.152, 3457.44, 3457.728, 3458.592, 3458.88, 3459.168, 3459.456, 3459.744, 3460.608, 3460.896, 3461.184, 3461.472, 3461.76, 3462.624, 3462.912, 3463.2, 3463.488, 3463.776, 3464.64, 3464.928, 3465.216, 3465.504, 3465.792, 3466.656, 3466.944, 3467.232, 3467.52, 3467.808, 3468.672, 3468.96, 3469.248, 3469.536, 3469.824, 3470.688, 3470.976, 3471.552, 3471.84, 3472.704, 3472.992, 3473.28, 3473.568, 3473.856, 3474.72, 3475.008, 3475.296, 3475.584, 3475.872, 3476.736, 3477.024, 3477.312, 3477.6, 3477.888, 3478.752, 3479.04, 3479.328, 3482.784, 3483.072, 3483.36, 3483.648, 3483.936, 3484.8, 3485.088, 3485.376, 3485.664, 3485.952, 3486.816, 3487.104, 3487.392, 3487.68, 3487.968, 3488.832, 3489.12, 3489.408, 3489.696, 3489.984, 3490.848, 3491.136],'y':[2.8704988033738155, 2.855552848626523, 2.8394408991556035, 2.8760938091928283, 2.839230155752019, 2.842457658803069, 2.8410261433228166, 2.8573861450756612, 2.857387021980881, 2.806297422602761, 2.7971283818671346, 2.7816507103799193, 2.731688047826982, 2.7418725745971857, 2.727028143376022, 2.776373497840072, 2.801856492953382, 2.7920703904952764, 2.8003712817530464, 2.7848618280702757, 2.7786797981369897, 2.7352797514124574, 2.741999007214465, 2.7920810188363783, 2.801841637046689, 2.832213052750878, 2.8819813363787383, 2.9318568069410413, 2.981497613758153, 3.0011931879816136, 2.9941795591480016, 2.9941645557792027, 2.9478162494706575, 2.9775519414015075, 2.982208419457967, 2.956031947959084, 2.9583227973910504, 2.964161293518658, 2.9712130327007737, 2.9498071809929405, 2.947371456134651, 2.9521622178702605, 2.9371266647017547, 2.93215460629238, 2.9514305014085975, 2.949006587519915, 2.9596092363229705, 2.934544963099511, 2.9259999819162847, 2.9197764455993918, 2.9089066976394196, 2.9100614536904934, 2.9161729891245227, 2.911935999891451, 2.896417726428179, 2.898940273843373, 2.8951579879203897, 2.886189355260204, 2.9091151063692093, 2.8992706703011177, 2.895453863515079, 2.8788995783497784, 2.8789845854022316, 2.89047933320601, 2.8979224192980593, 2.8881360937889298, 2.896751710195652, 2.8790824784924367, 2.8969734235605875, 2.898082683905878, 2.909342251831121, 2.9070673254146855, 2.8872077101208267, 2.891123474503871, 2.888572314334519, 2.8817986291265023, 2.8753337226251725, 2.8737598581078565, 2.8783575789921154, 2.867808253209416, 2.8497945212357005, 2.8392950365274237, 2.8153576260700426, 2.8185456929134998, 2.8253019924080207, 2.8288712405608827, 2.8221710322062323, 2.8100183794152946, 2.7681498575125953, 2.742390211943808, 2.792849100488907, 2.790026871755891, 2.792735260255324, 2.7746751189360492, 2.7928607427598386, 2.778956818305892, 2.774587510597919, 2.7629222212014386, 2.7385934473474234, 2.745969768703785, 2.7503317074577964, 2.7649130418783114, 2.767732897488769, 2.772028865305056, 2.7619817721377706, 2.7706064899620073, 2.7763126454998215, 2.786212313698737, 2.802673026727067, 2.78340104867985, 2.758183878749916, 2.743656235653572, 2.7701133956928436, 2.760025238913161, 2.7642904134655, 2.7599647903480373, 2.768544885546413, 2.7913152045520464, 2.7854886131704686, 2.7812735815987657, 2.7320161850757247, 2.7231157434265394, 2.6751482107427886, 2.681411567472767, 2.637660451225097, 2.6278522128296027, 2.596465035825378, 2.6169615566163595, 2.5683539101775836, 2.5225643565877998, 2.5427818533230595, 2.5698387209196802, 2.5203688447388806, 2.5314195096680696, 2.5623730621802134, 2.5853420641486036, 2.540136269265092, 2.565455618183025, 2.575464093057478, 2.578758890008093, 2.6105825154513993, 2.5903245474265875, 2.5696223783321663, 2.557233685735461, 2.5978400470167387, 2.611454530182371, 2.606400722406021, 2.6182183639355108, 2.606302545314764, 2.6113411921707956, 2.614691105551711, 2.6279869932301434, 2.619688293530369, 2.6263497361070973, 2.5762707320437723, 2.5516833894135105, 2.5372918619107634, 2.5171641021619755, 2.4983723964184352, 2.5153086713506463, 2.5448086235658294, 2.539356448084917, 2.5895495696020316, 2.6015979885697456, 2.5793537898839447, 2.596757942183393, 2.634237347235472, 2.62573269109998, 2.648973280370734, 2.653850410062133, 2.667541954741026, 2.65954303961076, 2.673108862263467, 2.6476972988331102, 2.6453257760740194, 2.667986307466183, 2.6675609678227357, 2.66105845423031, 2.647232437711875, 2.649478337561501, 2.6590103208820617, 2.6683168473509338, 2.6639166879519123, 2.6527879524755393, 2.6491881433080122, 2.6554116420393234, 2.659090848486373, 2.6190258290305173, 2.6189826877638294, 2.6471901347633344, 2.646685092454985, 2.6367726108298832, 2.6446671748512705, 2.6461789397586024, 2.6534272148910043, 2.640544131372565, 2.6259370611098025, 2.6192824324516666, 2.577783385627213, 2.581229718064362]}

from scipy.signal import find_peaks
from bokeh.plotting import figure
from bokeh.io import output_notebook, show
from bokeh.models import HoverTool, CrosshairTool

max_index, _ = find_peaks(line['y'], prominence=0.0464)
max_x = [line['x'][i] for i in max_index]
max_y = [line['y'][i] for i in max_index]
peak = {'x':max_x,'y':max_y}

hover_tool = HoverTool(tooltips=[('x','@x{0,0.00}'),('y','@y{0,0.00}')], formatters={'@x':'datetime'}, mode='vline')
crosshair = CrosshairTool(dimensions="both",line_color='magenta', line_width=0.5)
plot = figure()
plot.line(line['x'],line['y'],legend_label='line',line_color='gray')
plot.circle(line['x'],line['y'],legend_label='line',color='gray')
plot.line(peak['x'],peak['y'],legend_label='peak',line_color='red')
plot.circle(peak['x'],peak['y'],legend_label='peak',color='red')
plot.legend.click_policy="hide"
plot.add_tools(hover_tool)
plot.add_tools(crosshair)
output_notebook()
show(plot)

enter image description here

Quesiton

Is there a way to detect peaks in the yellow circles, which has big height on one side and small on on the other, to make the peak line goes as the blue one? It doesn't have to be SciPy.

enter image description here

0

There are 0 best solutions below